skip to main content

SciTech ConnectSciTech Connect

Title: Spark-plasma-sintering magnetic field assisted compaction of Co{sub 80}Ni{sub 20} nanowires for anisotropic ferromagnetic bulk materials

We developed a two-step process showing the way for sintering anisotropic nanostructured bulk ferromagnetic materials. A new reactor has been optimized allowing the synthesis of several grams per batch of nanopowders via a polyol soft chemistry route. The feasibility of the scale-up has been successfully demonstrated for Co{sub 80}Ni{sub 20} nanowires and a massic yield of ∼97% was obtained. The thus obtained nanowires show an average diameter of ∼6 nm and a length of ∼270 nm. A new bottom-up strategy allowed us to compact the powder into a bulk nanostructured system. We used a spark-plasma-sintering technique under uniaxial compression and low temperature assisted by a permanent magnetic field of 1 T. A macroscopic pellet of partially aligned nanowire arrays has been easily obtained. This showed optimized coercive properties along the direction of the magnetic field applied during compaction (i.e., the nanowires' direction)
Authors:
; ; ; ;  [1] ;  [2] ;  [3]
  1. Laboratoire des Sciences des Procédés et des Matériaux, CNRS, LSPM—UPR 3407, Université Paris 13, Sorbonne-Paris-Cité, 99 Avenue J.-B. Clément, 93430 Villetaneuse (France)
  2. Institut de Chimie et des Matériaux Paris Est, CNRS, ICMPE—UMR 7182, Equipe de Chimie Métallurgique des Terres Rares, 2-8 rue Henri Dunant, 94320 Thiais Cedex (France)
  3. Laboratoire de Physique et d’Étude des Matériaux, LPEM, ESPCI-ParisTech, CNRS, UPMC, 10 rue Vauquelin, F-75231 Paris Cedex 5 (France)
Publication Date:
OSTI Identifier:
22217880
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Applied Physics; Journal Volume: 114; Journal Issue: 16; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ANISOTROPY; COBALT ALLOYS; COMPACTS; COMPRESSION; FERROMAGNETIC MATERIALS; MAGNETIC FIELDS; NICKEL ALLOYS; PELLETS; PLASMA; POWDERS; QUANTUM WIRES; SINTERING