skip to main content

SciTech ConnectSciTech Connect

Title: MEASURING TRANSIT SIGNAL RECOVERY IN THE KEPLER PIPELINE. I. INDIVIDUAL EVENTS

The Kepler mission was designed to measure the frequency of Earth-size planets in the habitable zone of Sun-like stars. A crucial component for recovering the underlying planet population from a sample of detected planets is understanding the completeness of that sample-the fraction of the planets that could have been discovered in a given data set that actually were detected. Here, we outline the information required to determine the sample completeness, and describe an experiment to address a specific aspect of that question, i.e., the issue of transit signal recovery. We investigate the extent to which the Kepler pipeline preserves individual transit signals by injecting simulated transits into the pixel-level data, processing the modified pixels through the pipeline, and comparing the measured transit signal-to-noise ratio (S/N) to that expected without perturbation by the pipeline. We inject simulated transit signals across the full focal plane for a set of observations for a duration of 89 days. On average, we find that the S/N of the injected signal is recovered at MS = 0.9973({+-} 0.0012) Multiplication-Sign BS - 0.0151({+-} 0.0049), where MS is the measured S/N and BS is the baseline, or expected, S/N. The 1{sigma} width of the distribution around this correlationmore » is {+-}2.64%. This indicates an extremely high fidelity in reproducing the expected detection statistics for single transit events, and provides teams performing their own periodic transit searches the confidence that there is no systematic reduction in transit signal strength introduced by the pipeline. We discuss the pipeline processes that cause the measured S/N to deviate significantly from the baseline S/N for a small fraction of targets; these are primarily the handling of data adjacent to spacecraft re-pointings and the removal of harmonics prior to the measurement of the S/N. Finally, we outline the further work required to characterize the completeness of the Kepler pipeline.« less
Authors:
; ; ; ; ; ; ; ; ;  [1] ;  [2] ;  [3] ; ;  [4]
  1. SETI Institute/NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States)
  2. Bay Area Environmental Research Institute/NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States)
  3. Astronomy Department, University of Florida, 211 Bryant Space Sciences Center, Gainesville, FL 32111 (United States)
  4. Orbital Sciences Corporation/NASA Ames Research Center, Moffett Field, CA 94035 (United States)
Publication Date:
OSTI Identifier:
22136590
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal, Supplement Series; Journal Volume: 207; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; COMPUTER CODES; DATA ANALYSIS; DATA PROCESSING; DETECTION; DISTURBANCES; HARMONICS; PLANETS; SIGNALS; SIGNAL-TO-NOISE RATIO; STATISTICS