skip to main content

SciTech ConnectSciTech Connect

Title: SYSTEMATICS OF DYNAMICAL MASS EJECTION, NUCLEOSYNTHESIS, AND RADIOACTIVELY POWERED ELECTROMAGNETIC SIGNALS FROM NEUTRON-STAR MERGERS

We investigate systematically the dynamical mass ejection, r-process nucleosynthesis, and properties of electromagnetic counterparts of neutron-star (NS) mergers in dependence on the uncertain properties of the nuclear equation of state (EOS) by employing 40 representative, microphysical high-density EOSs in relativistic, hydrodynamical simulations. The crucial parameter determining the ejecta mass is the radius R{sub 1.35} of a 1.35 M{sub Sun} NS. NSs with smaller R{sub 1.35} (''soft'' EOS) eject systematically higher masses. These range from {approx}10{sup -3} M{sub Sun} to {approx}10{sup -2} M{sub Sun} for 1.35-1.35 M{sub Sun} binaries and from {approx}5 Multiplication-Sign 10{sup -3} M{sub Sun} to {approx}2 Multiplication-Sign 10{sup -2} M{sub Sun} for 1.2-1.5 M{sub Sun} systems (with kinetic energies between {approx}5 Multiplication-Sign 10{sup 49} erg and 10{sup 51} erg). Correspondingly, the bolometric peak luminosities of the optical transients of symmetric (asymmetric) mergers vary between 3 Multiplication-Sign 10{sup 41} erg s{sup -1} and 14 Multiplication-Sign 10{sup 41} erg s{sup -1} (9 Multiplication-Sign 10{sup 41} erg s{sup -1} and 14.5 Multiplication-Sign 10{sup 41} erg s{sup -1}) on timescales between {approx}2 hr and {approx}12 hr. If these signals with absolute bolometric magnitudes from -15.0 to -16.7 are measured, the tight correlation of their properties with those of the merging NSs mightmore » provide valuable constraints on the high-density EOS. The r-process nucleosynthesis exhibits a remarkable robustness independent of the EOS, producing a nearly solar abundance pattern above mass number 130. By the r-process content of the Galaxy and the average production per event the Galactic merger rate is limited to 4 Multiplication-Sign 10{sup -5} yr{sup -1} (4 Multiplication-Sign 10{sup -4} yr{sup -1}) for a soft (stiff) NS EOS, if NS mergers are the main source of heavy r-nuclei. The production ratio of radioactive {sup 232}Th to {sup 238}U attains a stable value of 1.64-1.67, which does not exclude NS mergers as potential sources of heavy r-material in the most metal-poor stars.« less
Authors:
;  [1] ;  [2]
  1. Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)
  2. Institut d'Astronomie et d'Astrophysique, Universite Libre de Bruxelles, C.P. 226, B-1050 Brussels (Belgium)
Publication Date:
OSTI Identifier:
22131022
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 773; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ABUNDANCE; BOLOMETERS; EQUATIONS OF STATE; GALAXIES; HYDRODYNAMIC MODEL; LUMINOSITY; MASS NUMBER; NEUTRON STARS; NUCLEOSYNTHESIS; R PROCESS; RELATIVISTIC RANGE; SIGNALS; SYMMETRY; THORIUM 232; URANIUM 238