skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Conditions for reliable time-resolved dosimetry of electronic portal imaging devices for fixed-gantry IMRT and VMAT

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4811099· OSTI ID:22121631
; ;  [1];  [2];  [3];  [4]
  1. Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, California 92354 (United States)
  2. Department of Physics, East Carolina University, Greenville, North Carolina 27858 (United States)
  3. Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 (United States)
  4. Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232 (United States)

Purpose: The continuous scanning mode of electronic portal imaging devices (EPID) that offers time-resolved information has been newly explored for verifying dynamic radiation deliveries. This study seeks to determine operating conditions (dose rate stability and time resolution) under which that mode can be used accurately for the time-resolved dosimetry of intensity-modulated radiation therapy (IMRT) beams.Methods: The authors have designed the following test beams with variable beam holdoffs and dose rate regulations: a 10 Multiplication-Sign 10 cm open beam to serve as a reference beam; a sliding window (SW) beam utilizing the motion of a pair of multileaf collimator (MLC) leaves outside the 10 Multiplication-Sign 10 cm jaw; a step and shoot (SS) beam to move the pair in step; a volumetric modulated arc therapy (VMAT) beam. The beams were designed in such a way that they all produce the same open beam output of 10 Multiplication-Sign 10 cm. Time-resolved ion chamber measurements at isocenter and time-resolved and integrating EPID measurements were performed for all beams. The time-resolved EPID measurements were evaluated through comparison with the ion chamber and integrating EPID measurements, as the latter are accepted procedures. For two-dimensional, time-resolved evaluation, a VMAT beam with an infield MLC travel was designed. Time-resolved EPID measurements and Monte Carlo calculations of such EPID dose images for this beam were performed and intercompared.Results: For IMRT beams (SW and SS), the authors found disagreement greater than 2%, caused by frame missing of the time-resolved mode. However, frame missing disappeared, yielding agreement better than 2%, when the dose rate of irradiation (and thus the frame acquisition rates) reached a stable and planned rate as the dose of irradiation was raised past certain thresholds (a minimum 12 s of irradiation per shoot used for SS IMRT). For VMAT, the authors found that dose rate does not affect the frame acquisition rate, thereby causing no frame missing. However, serious inplanar nonuniformities were found. This could be overcome by sacrificing temporal resolution (10 frames or 0.95 s/image): the continuous images agreed with ion chamber responses at the center of EPID and the calculation two-dimensionally in a time-resolved manner.Conclusions: The authors have determined conditions under which the continuous mode can be used for time-resolved dosimetry of fixed-gantry IMRT and VMAT and demonstrated it for VMAT.

OSTI ID:
22121631
Journal Information:
Medical Physics, Vol. 40, Issue 7; Other Information: (c) 2013 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English