skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: TEARING UP THE DISK: HOW BLACK HOLES ACCRETE

Journal Article · · Astrophysical Journal Letters
;  [1];  [2];  [3]
  1. Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom)
  2. Monash Centre for Astrophysics (MoCA), School of Mathematical Sciences, Monash University, Victoria 3800 (Australia)
  3. Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States)

We show that in realistic cases of accretion in active galactic nuclei or stellar-mass X-ray binaries, the Lense-Thirring effect breaks the central regions of tilted accretion disks around spinning black holes into a set of distinct planes with only tenuous flows connecting them. If the original misalignment of the outer disk to the spin axis of the hole is 45 Degree-Sign {approx}< {theta} {approx}< 135 Degree-Sign , as in {approx}70% of randomly oriented accretion events, the continued precession of these disks sets up partially counterrotating gas flows. This drives rapid infall as angular momentum is canceled and gas attempts to circularize at smaller radii. Disk breaking close to the black hole leads to direct dynamical accretion, while breaking further out can drive gas down to scales where it can accrete rapidly. For smaller tilt angles breaking can still occur and may lead to other observable phenomena such as quasi-periodic oscillations. For such effects not to appear, the black hole spin must in practice be negligibly small, or be almost precisely aligned with the disk. Qualitatively similar results hold for any accretion disk subject to a forced differential precession, such as an external disk around a misaligned black hole binary.

OSTI ID:
22078525
Journal Information:
Astrophysical Journal Letters, Vol. 757, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 2041-8205
Country of Publication:
United States
Language:
English

Similar Records

A POSSIBLE SIGNATURE OF LENSE-THIRRING PRECESSION IN DIPPING AND ECLIPSING NEUTRON-STAR LOW-MASS X-RAY BINARIES
Journal Article · Sat Dec 01 00:00:00 EST 2012 · Astrophysical Journal Letters · OSTI ID:22078525

FRAME DRAGGING, DISK WARPING, JET PRECESSING, AND DIPPED X-RAY LIGHT CURVE OF Sw J1644+57
Journal Article · Thu Jan 10 00:00:00 EST 2013 · Astrophysical Journal · OSTI ID:22078525

Tilted Thick-Disk Accretion onto a Kerr Black Hole
Journal Article · Fri Dec 12 00:00:00 EST 2003 · Astrophysical Journal · OSTI ID:22078525