skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Magnetocaloric effect in manganites

Journal Article · · Journal of Experimental and Theoretical Physics
;  [1];  [2]
  1. Moscow State University (Russian Federation)
  2. Polish Academy of Sciences, Institute of Physics (Poland)

The magnetocaloric effect (MCE) in La{sub 1-x}Sr{sub x}MnO{sub 3}, Sm{sub 0.55}Sr{sub 0.45}MnO{sub 3}, and PrBaMn{sub 2}O{sub 6} compounds is studied. The maximum values of MCE ({Delta}T{sub max}) determined by a direct method in the second and third compositions and in La{sub 0.9}Sr{sub 0.1}MnO{sub 3} are found to be much lower than those calculated from the change of the magnetic part of entropy in the Curie temperature (T{sub C}) and the Neel temperature (T{sub N}) range. The negative contribution of the antiferromagnetic (AFM) part of a sample in the La{sub 1-x}Sr{sub x}MnO{sub 3} system at 0.1 {<=} x {<=} 0.3 decreases {Delta}T{sub max} and changes the {Delta}T(T) curve shape, shifting its maximum 20-40 K above T{sub C}. Lower values of {Delta}T{sub max} are detected in the range T{sub C} = 130-142 K in polycrystalline and single-crystal Sm{sub 0.55}Sr{sub 0.45}MnO{sub 3} samples cooled in air. If such samples were cooled in an oxygen atmosphere (which restores broken Mn-O-Mn bonds and, thus, increases the volume of CE-type AFM clusters), the maximum in the temperature dependence of MCE is located at T{sub N} (243 K) for CE-type AFM clusters. A magnetic field applied to a sample during the MCE measurements transforms these clusters into a ferromagnetic (FM) state, and both types of clusters decompose at T = T{sub N}. The PrBaMn{sub 2}O{sub 6} composition undergoes an AFM-FM transition at 231 K, and the temperature dependence of its MCE has a sharp minimum at T = 234 K, where MCE is negative, and a broad maximum covering T{sub C}. The absolute values of MCE at both extrema are several times lower than those calculated from the change in the magnetic entropy. These phenomena are explained by the presence of a magnetically heterogeneous FM-AFM state in these manganites.

OSTI ID:
22069308
Journal Information:
Journal of Experimental and Theoretical Physics, Vol. 115, Issue 4; Other Information: Copyright (c) 2012 Pleiades Publishing, Ltd.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1063-7761
Country of Publication:
United States
Language:
English