skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Diffusion bonding titanium to stainless steel using Nb/Cu/Ni multi-interlayer

Journal Article · · Materials Characterization
 [1]; ; ;  [2]
  1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072 (China)
  2. Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072 (China)

By using Nb/Cu/Ni structure as multi-interlayer, diffusion bonding titanium to austenitic stainless steel has been conducted. The effects of bonding temperature and bonding time on the interfacial microstructure were analyzed by scanning electron microscope equipped with energy dispersive spectroscope, and the joint strength was evaluated by tensile test. The results showed that Ni atoms aggregated at the Cu-Nb interface, which promoted Cu solution in Nb. This phenomenon forms a Cu-Nb solution strengthening effect. However, such effect would decay by using long bonding time that dilutes Ni atom aggregation, or be suppressed by using high bonding temperature that embrittles the Cu-Nb interface due to the formation of large grown intermetallic compounds. The sound joint was obtained by promoted parameters as 850 Degree-Sign C for 30-45 min, under which a bonding strength around 300 MPa could be obtained. - Highlights: Black-Right-Pointing-Pointer Titanium was diffusion bonded to stainless steel using Nb/Cu/Ni multi-interlayer. Black-Right-Pointing-Pointer The effects of bonding parameters on microstructure and joint strength were studied. Black-Right-Pointing-Pointer Nickel aggregation promotes Cu solution in Nb which can strengthen the joint. Black-Right-Pointing-Pointer The sound joint with strength of around 300 MPa was obtained by promoted parameters.

OSTI ID:
22066460
Journal Information:
Materials Characterization, Vol. 68, Issue Complete; Other Information: Copyright (c) 2012 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 1044-5803
Country of Publication:
United States
Language:
English