skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: JUPITER MODELS WITH IMPROVED AB INITIO HYDROGEN EQUATION OF STATE (H-REOS.2)

Journal Article · · Astrophysical Journal
; ;  [1];  [2]
  1. Institut fuer Physik, Universitaet Rostock, D-18051 Rostock (Germany)
  2. CEA, DAM, DIF, F-91297 Arpajon (France)

The amount and distribution of heavy elements in Jupiter gives indications on the process of its formation and evolution. Core mass and metallicity predictions, however, depend on the equations of state (EOSs) used and on model assumptions. We present an improved ab initio hydrogen EOS, H-REOS.2, and compute the internal structure and thermal evolution of Jupiter within the standard three-layer approach. The advance over our previous Jupiter models with H-REOS.1 by Nettelmann et al. is that the new models are also consistent with the observed {approx}> 2 times solar heavy element abundances in Jupiter's atmosphere. Such models have a rock core mass M{sub c} = 0-8 M{sub Circled-Plus }, total mass of heavy elements M{sub Z} = 28-32 M{sub Circled-Plus }, a deep internal layer boundary at {>=}4 Mbar, and a cooling time of 4.4-5.0 Gyr when assuming homogeneous evolution. We also calculate two-layer models in the manner of Militzer et al. and find a comparable large core of 16-21 M{sub Circled-Plus }, out of which {approx}11 M{sub Circled-Plus} is helium, but a significantly higher envelope metallicity of 4.5 times solar. According to our preferred three-layer models, neither the characteristic frequency ({nu}{sub 0} {approx} 156 {mu}Hz) nor the normalized moment of inertia ({lambda} {approx}0.276) is sensitive to the core mass but accurate measurements could well help to rule out some classes of models.

OSTI ID:
22034602
Journal Information:
Astrophysical Journal, Vol. 750, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English