skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Dosimetric Model of Duodenal Toxicity After Stereotactic Body Radiotherapy for Pancreatic Cancer

Journal Article · · International Journal of Radiation Oncology, Biology and Physics
; ; ; ;  [1]
  1. Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)

Introduction: Dose escalation for pancreas cancer is limited by the tolerance of adjacent normal tissues, especially with stereotactic body radiotherapy (SBRT). The duodenum is generally considered to be the organ at greatest risk. This study reports on the dosimetric determinants of duodenal toxicity with single-fraction SBRT. Methods and Materials: Seventy-three patients with locally advanced unresectable pancreatic adenocarcinoma received 25 Gy in a single fraction. Dose-volume histogram (DVH) endpoints evaluated include V{sub 5} (volume of duodenum that received 5 Gy), V{sub 10}, V{sub 15}, V{sub 20}, V{sub 25}, and D{sub max} (maximum dose to 1 cm{sup 3}). Normal tissue complication probability (NTCP) was evaluated with a Lyman model. Univariate and multivariate analyses were conducted with Kaplan-Meier and Cox regression models. Results: The median time to Grade 2-4 duodenal toxicity was 6.3 months (range, 1.6-11.8 months). The 6- and 12-month actuarial rates of toxicity were 11% and 29%, respectively. V{sub 10}-V{sub 25} and D{sub max} all correlated significantly with duodenal toxicity (p < 0.05). In particular, V{sub 15} {>=} 9.1 cm{sup 3} and V{sub 15} < 9.1 cm{sup 3} yielded duodenal toxicity rates of 52% and 11%, respectively (p = 0.002); V{sub 20} {>=} 3.3 cm{sup 3} and V{sub 20} < 3.3 cm{sup 3} gave toxicity rates of 52% and 11%, respectively (p = 0.002); and D{sub max} {>=} 23 Gy and D{sub max} < 23 Gy gave toxicity rates of 49% and 12%, respectively (p = 0.004). Lyman NTCP model optimization generated the coefficients m = 0.23, n = 0.12, and TD{sub 50} = 24.6 Gy. Only the Lyman NTCP model remained significant in multivariate analysis (p = 0.001). Conclusions: Multiple DVH endpoints and a Lyman NTCP model are strongly predictive of duodenal toxicity after SBRT for pancreatic cancer. These dose constraints will be valuable in future abdominal SBRT studies.

OSTI ID:
21491510
Journal Information:
International Journal of Radiation Oncology, Biology and Physics, Vol. 78, Issue 5; Other Information: DOI: 10.1016/j.ijrobp.2009.09.075; PII: S0360-3016(09)03522-6; Copyright (c) 2010 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; ISSN 0360-3016
Country of Publication:
United States
Language:
English