skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Persistence of DNA damage following exposure of human bladder cells to chronic monomethylarsonous acid

Journal Article · · Toxicology and Applied Pharmacology
;  [1];  [2];  [1]
  1. Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel St., Tucson, AZ 85721 (United States)
  2. SC Johnson and Son, Inc., 1525 Howe St., Racine, WI 53403-5011 (United States)

Malignant transformation was demonstrated in UROtsa cells following 52-weeks of exposure to 50 nM monomethylarsonous acid (MMA{sup III}); the result was the malignantly transformed cell line, URO-MSC. URO-MSC cells were used to study the induction of DNA damage and the alteration of DNA repair enzymes in both the presence of MMA{sup III} [URO-MSC(+)] and after subsequent removal of MMA{sup III} [URO-MSC(-)] following chronic, low-level exposure. In the presence of MMA{sup III}, URO-MSC(+) cells demonstrated a sustained increase in DNA damage following 12-weeks of exposure; in particular, a significant increase in DNA single-strand breaks at 12-weeks of exposure consistently elevated through 52 weeks. The persistence of DNA damage in URO-MSC cells was assessed after a 2-week removal of MMA{sup III}. URO-MSC(-) cells demonstrated a decrease in DNA damage compared to URO-MSC(+); however, DNA damage in URO-MSC(-) remained significantly elevated when compared to untreated UROtsa and increased in a time-dependent manner. Reactive oxygen species (ROS) were demonstrated to be a critical component in the generation of DNA damage determined through the incubation of ROS scavengers with URO-MSC cells. Poly (ADP-ribose) polymerase (PARP) is a key repair enzyme in DNA single-strand break repair. URO-MSC(+) resulted in a slight increase in PARP activity after 36-weeks of MMA{sup III} exposure, suggesting the presence of MMA{sup III} is inhibiting the increase in PARP activity. In support, PARP activity in URO-MSC(-) increased significantly, coinciding with a subsequent decrease in DNA damage demonstrated in URO-MSC(-) compared to URO-MSC(+). These data demonstrate that chronic, low-level exposure of UROtsa cells to 50 nM MMA{sup III} results in: the induction of DNA damage that remains elevated upon removal of MMA{sup III}; increased levels of ROS that play a role in MMA{sup III} induced-DNA damage; and decreased PARP activity in the presence of MMA{sup III}.

OSTI ID:
21344802
Journal Information:
Toxicology and Applied Pharmacology, Vol. 241, Issue 2; Other Information: DOI: 10.1016/j.taap.2009.08.016; PII: S0041-008X(09)00352-4; Copyright (c) 2009 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; ISSN 0041-008X
Country of Publication:
United States
Language:
English