skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE INTERPLAY OF TURBULENCE AND MAGNETIC FIELDS IN STAR-FORMING REGIONS: SIMULATIONS AND OBSERVATIONS

Journal Article · · Astrophysical Journal
;  [1];  [2]
  1. Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1 (Canada)
  2. Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7 (Canada)

We analyze a suite of thin-sheet magnetohydrodynamical simulations based on the formulation of Basu, Ciolek, Dapp, and Wurster. These simulations allow us to examine the observational consequences to a star-forming region of varying the input level of turbulence (between thermal and a Mach number of 4) and the initial magnetic field strength corresponding to a range of mass to flux ratios between subcritical ({mu}{sub 0} = 0.5) and supercritical ({mu}{sub 0} = 10). The input turbulence is allowed to decay over the duration of the simulation. We compare the measured observable quantities with those found from surveying the Perseus molecular cloud. We find that only the most turbulent of simulations (high Mach number and weak magnetic field) have sufficient large-scale velocity dispersion (at {approx}1 pc) to match that observed across extinction regions in Perseus. Generally, the simulated core ({approx}0.02 pc) and line-of-sight velocity dispersions provide a decent match to observations. The motion between the simulated core and its local environment, however, is far too large in simulations with high large-scale velocity dispersion.

OSTI ID:
21333738
Journal Information:
Astrophysical Journal, Vol. 699, Issue 2; Other Information: DOI: 10.1088/0004-637X/699/2/1433; Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English

Similar Records

THE COMPLETE SURVEY OF OUTFLOWS IN PERSEUS
Journal Article · Tue Jun 01 00:00:00 EDT 2010 · Astrophysical Journal · OSTI ID:21333738

Anisotropic formation of magnetized cores in turbulent clouds
Journal Article · Thu Sep 10 00:00:00 EDT 2015 · Astrophysical Journal · OSTI ID:21333738

DIRECT OBSERVATION OF A SHARP TRANSITION TO COHERENCE IN DENSE CORES
Journal Article · Sat Mar 20 00:00:00 EDT 2010 · Astrophysical Journal Letters · OSTI ID:21333738