skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A NPxY-independent {beta}5 integrin activation signal regulates phagocytosis of apoptotic cells

Journal Article · · Biochemical and Biophysical Research Communications
;  [1];  [1]
  1. Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103-6399 (United States)

Integrin receptors are heterodimeric transmembrane receptors with critical functions in cell adhesion and migration, cell cycle progression, differentiation, apoptosis, and phagocytosis of apoptotic cells. Integrins are activated by intracellular signaling that alter the binding affinity for extracellular ligands, so-called inside to outside signaling. A common element for integrin activation involves binding of the cytoskeletal protein talin, via its FERM domain, to a highly conserved NPxY motif in the {beta} chain cytoplasmic tails, which is involved in long-range conformation changes to the extracellular domain that impinges on ligand affinity. When the human beta-5 ({beta}5) integrin cDNA was expressed in {alpha}v positive, {beta}5 and {beta}3 negative hamster CS-1 cells, it promoted NPxY-dependent adhesion to VTN-coated surfaces, phosphorylation of FAK, and concomitantly, {beta}5 integrin-EGFP protein was recruited into talin and paxillin-containing focal adhesions. Expression of a NPxY destabilizing {beta}5 mutant (Y750A) abrogated adhesion and {beta}5-Y750A-EGFP was excluded from focal adhesions at the tips of stress fibers. Surprisingly, expression of {beta}5 Y750A integrin had a potent gain-of-function effect on apoptotic cell phagocytosis, and further, a {beta}5-Y750A-EGFP fusion integrin readily bound MFG-E8-coated 10 {mu}m diameter microspheres developed as apoptotic cell mimetics. The critical sequences in {beta}5 integrin were mapped to a YEMAS motif just proximal to the NPxY motif. Our studies suggest that the phagocytic function of {beta}5 integrin is regulated by an unconventional NPxY-talin-independent activation signal and argue for the existence of molecular switches in the {beta}5 cytoplasmic tail for adhesion and phagocytosis.

OSTI ID:
21033017
Journal Information:
Biochemical and Biophysical Research Communications, Vol. 364, Issue 3; Other Information: DOI: 10.1016/j.bbrc.2007.10.049; PII: S0006-291X(07)02189-4; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0006-291X
Country of Publication:
United States
Language:
English