skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis of Sm{sup 3+}-doped strontium barium niobate crystals in glass by samarium atom heat processing

Journal Article · · Journal of Solid State Chemistry
 [1];  [1];  [1];  [1];  [1]
  1. Department of Chemistry, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan)

New glasses giving the crystallization of Sm{sup 3+}-doped Sr {sub x} Ba{sub 1-} {sub x} Nb{sub 2}O{sub 6} (SBN) ferroelectrics have been developed in the Sm{sub 2}O{sub 3}-SrO-BaO-Nb{sub 2}O{sub 5}-B{sub 2}O{sub 3} system, and the formation of SBN crystal dots and lines by continuous wave Nd:YAG laser (wavelength:1064 nm, power: 1 W) irradiations, i.e., samarium atom heat processing, has been examined. The formation of Sm{sup 3+}-doped SBN non-linear optical crystals is confirmed from X-ray diffraction analyses, micro-Raman scattering spectra, second harmonic generations, and photoluminescence spectra. Sm{sup 3+}-doped SBN crystal dots with the diameters of 20-70 {mu}m and lines with the widths of 20-40 {mu}m are written at the surface of some glasses such as 10Sm{sub 2}O{sub 3}.10SrO.10BaO.20Nb{sub 2}O{sub 5}.50B{sub 2}O{sub 3} (mol%) by Nd:YAG laser irradiations with the irradiation times of 20-70 s for the dots and with the scanning speeds of 1-5 {mu}m/s for the lines. The present study suggests that the samarium atom heat processing has a potential for the patterning of optical waveguides consisting of ferroelectric SBN crystals in glass substrates.

OSTI ID:
20784791
Journal Information:
Journal of Solid State Chemistry, Vol. 178, Issue 11; Other Information: DOI: 10.1016/j.jssc.2005.09.002; PII: S0022-4596(05)00407-X; Copyright (c) 2005 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English