skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rates of complex formation in collisions of rotationally excited homonuclear diatoms with ions at very low temperatures: Application to hydrogen isotopes and hydrogen-containing ions

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.1889425· OSTI ID:20722230
; ; ;  [1]
  1. Department of Chemistry, Technion--Israel Institute of Technology, Haifa 32000 (Israel)

State-selected rate coefficients for the capture of ground and rotationally excited homonuclear molecules by ions are calculated, for low temperatures, within the adiabatic channel classical (ACCl) approximation, and, for zero temperature, via an approximate calculation of the Bethe limit. In the intermediate temperature range, the accurate quantal rate coefficients are calculated for j=0 and j=1 states of hydrogen isotopes (H{sub 2}, HD, and D{sub 2}) colliding with hydrogen-containing ions, and simple analytical expressions are suggested to approximate the rate coefficients. For the ground rotational state of diatoms, the accurate quantal rate coefficients are higher compared to their ACCl counterparts, while for the first excited rotational state the reverse is true. The physical significance of quantum effects for low-temperature capture and the applicability of the statistical description of capture are considered. Particular emphasis is given to the role of Coriolis interaction. The relevance of the present capture calculations for rates of ortho-para conversion of H{sub 2} in collisions with hydrogen-containing ions at low temperatures is discussed.

OSTI ID:
20722230
Journal Information:
Journal of Chemical Physics, Vol. 122, Issue 18; Other Information: DOI: 10.1063/1.1889425; (c) 2005 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English