skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Wall transpiration on mixed convection heat transfer in a square duct rotating about a parallel axis

Conference ·
OSTI ID:20014376

A detailed numerical study, using the vorticity-velocity method, has been carried out to examine the wall transpiration on mixed convection flow and heat transfer in a square duct rotating about a parallel axis. The prediction was presented for various parameters, wall Reynolds number Re{sub w}, rotational Reynolds number J, and rotational Grashof number Gr{sub {Omega}}. Typical developments of axial velocity, secondary flow, and temperature at various axial locations in the entrance region are presented. Both local circumferentially averaged friction factors f Re and Nusselt number N u in the developing region are examined. The predicted results disclosed that the wall transpiration effect has considerable impact on the flow and heat transfer characteristics. Results also showed that both circumferentially averaged friction factor and Nusselt number are enhanced with an increase in J or Gr{sub {Omega}}, except for the range of J < 400 or Gr{sub {Omega}} < 1,000.

Research Organization:
Hua Fan Coll. of Humanities and Technology, Shih-Ting, Taipei (TW)
OSTI ID:
20014376
Resource Relation:
Conference: 32nd National Heat Transfer Conference, Baltimore, MD (US), 08/08/1997--08/12/1997; Other Information: PBD: 1997; Related Information: In: ASME proceedings of the 32nd national heat transfer conference (HTD-Vol. 346). Volume 8: Fundamentals of convection; Turbulent heat transfer; Mixed convection heat transfer, by Oosthuizen, P.H.; Chen, T.S.; Acharya, S.; Armaly, B.F.; Pepper, D.W. [eds.], 201 pages.
Country of Publication:
United States
Language:
English