skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Separation of boric acid in liquid waste with anion exchange membrane contactor

Journal Article · · Waste Management
 [1];  [2]
  1. Korea Electric Power Corporation Research Centre, Taejon (Korea, Republic of). Dept. of Nuclear Energy Research
  2. Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of). Dept. of Nuclear Engineering

In order to separate boric acid in liquid waste, some possible technologies were investigated and the membrane contactor without dispersion and density differences was selected. The separation experiments on a Celgard 3401{reg_sign} hydrophilic microporous membrane contactor were first performed to obtain the basic data and to determine the properties of the contactor. The experimental conditions were as follows: boric acid concentrations up to 2.0 M, pH 7.0, temperatures of 25 and 55 C, and flow rates of 100, 300, 500, and 800 cm{sup 3}/min. Secondly, an AFN{reg_sign} anion exchange membrane contactor was tested at temperatures of 40 and 55 C and flow rate 400 cm{sup 3}/min. Boric acid solutions were prepared by the same method as that for Celgard 3401{reg_sign} but contained 5.0{times}10{sup {minus}4} M cobalt chloride (CoCl{sub 2}). To simulate membrane contractors, parameters such as the differential diffusion coefficients of boric acid and the mass transfer coefficients in the AFN membrane were measured, and regression models estimating the diffusion coefficient at several conditions were developed. The Celgard 3401{reg_sign} membrane contactor was simulated and compared with experimental data. Simulation results agreed with the experimental data well when a proper correction factor was utilized. The correction factor was independent of the solution temperature and was 8.75 at the flow rates of 300--800 cm{sup 3}/min. This correction factor was also applied to simulate the AFN{reg_sign} resulted in a good agreement with experiment at 40 C, but not 55 C. The retention on cobalt was also better at 40 c than 55 C. The simulating computer program was also applied to a life size contactor designed conceptually.

OSTI ID:
153522
Journal Information:
Waste Management, Vol. 15, Issue 4; Other Information: PBD: 1995
Country of Publication:
United States
Language:
English