skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-Surface-Area Architectures for Improved Charge Transfer Kinetics at the Dark Electrode in Dye-Sensitized Solar Cells

Journal Article · · ACS Applied Materials and Interfaces
DOI:https://doi.org/10.1021/am501455b· OSTI ID:1357767

Dye-sensitized solar cell (DSC) redox shuttles other than triiodide/iodide have exhibited significantly higher charge transfer resistances at the dark electrode. This often results in poor fill factor, a severe detriment to device performance. Rather than moving to dark electrodes of untested materials that may have higher catalytic activity for specific shuttles, the surface area of platinum dark electrodes could be increased, improving the catalytic activity by simply presenting more catalyst to the shuttle solution. A new copper-based redox shuttle that experiences extremely high charge-transfer resistance at conventional Pt dark electrodes yields cells having fill-factors of less than 0.3. By replacing the standard Pt dark electrode with an inverse opal Pt electrode fabricated via atomic layer deposition, the dark electrode surface area is boosted by ca. 50-fold. The resulting increase in interfacial electron transfer rate (decrease in charge-transfer resistance) nearly doubles the fill factor and therefore the overall energy conversion efficiency, illustrating the utility of this high-area electrode for DSCs.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE Office of Science - Energy Frontier Research Center - Argonne-Northwestern Solar Energy Research (ANSER)
DOE Contract Number:
AC02-06CH11357
OSTI ID:
1357767
Journal Information:
ACS Applied Materials and Interfaces, Vol. 6, Issue 11; ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English

Similar Records

Synthesis and characterization of (Ni{sub 1−x}Co{sub x})Se{sub 2} based ternary selenides as electrocatalyst for triiodide reduction in dye-sensitized solar cells
Journal Article · Wed Jun 15 00:00:00 EDT 2016 · Journal of Solid State Chemistry · OSTI ID:1357767

Highly efficient dye-sensitized solar cell with GNS/MWCNT/PANI as a counter electrode
Journal Article · Sat Nov 15 00:00:00 EST 2014 · Materials Research Bulletin · OSTI ID:1357767

Dynamics of Back Electron Transfer in Dye-Sensitized Solar Cells Featuring 4-tert-Butyl-Pyridine and Atomic-Layer-Deposition Alumina as Surface Modifiers.
Journal Article · Thu Jun 18 00:00:00 EDT 2015 · Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry · OSTI ID:1357767

Related Subjects