skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Slip-activated surface creep with room-temperature super-elongation in metallic nanocrystals

Journal Article · · Nature Materials
DOI:https://doi.org/10.1038/nmat4813· OSTI ID:1353339

Atom diffusion assisted by surfaces or interfaces (e.g. Coble creep) has been known to be the origin of large creep rates and superplastic softening in nanosized crystals at low temperature. By contrast, source-limited crystal slip in defect-free nanostructures engenders important strengths, but also premature plastic instability and low ductility. Here, using in-situ transmission electron microscopy, we report a slip-activated surface creep mechanism that suppresses the tendency towards plastic instability without compromising the strength, resulting in ultra-large room-temperature plasticity in face-centered-cubic silver nanocrystals. This phenomenon is shown experimentally and theoretically to prevail over a material-dependent range of diameters where surface dislocation nucleation becomes a stimulus to diffusional creep. This work provides new fundamental insight into coupled diffusive-displacive deformation mechanisms maximizing ductility and strength simultaneously in nanoscale materials.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1353339
Report Number(s):
PNNL-SA-118612; 48379; KP1704020
Journal Information:
Nature Materials, Vol. 16, Issue 4; ISSN 1476-1122
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English