skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Proton irradiation effects on beryllium – A macroscopic assessment

Journal Article · · Journal of Nuclear Materials

Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This study focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Nuclear Physics (NP)
Grant/Contract Number:
SC00112704
OSTI ID:
1337619
Report Number(s):
BNL-112576-2016-JA
Journal Information:
Journal of Nuclear Materials, Vol. 479, Issue C; ISSN 0022-3115
Publisher:
ElsevierCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science