skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Shock-isolation material selection for electronic packages in hard-target environment

Thesis/Dissertation ·
OSTI ID:1334949
 [1]
  1. New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

High velocity munitions and kinetic penetrators experience monumental external forces, impulses, and accelerations. The hard target environment is immensely taxing on sophisticated electronic components and recorders designed to retrieve valuable data related to the systems performance and characteristics in the periods of flight, impact, and post-impact. Such electronic systems have upper limits of overall shock intensity which, if exceeded, will either shorten the operating life of the parts or risk destruction resulting in loss of both the data and the principal value of the recorder. The focus of this project was to refine the categorization of leading material types for encapsulation and passive shock isolation and implement them in a method useable for a wide variety of environments. Namely, a design methodology capable of being tailored to the specific impact conditions to maximize the lively hood of sensitive electronics and the information recorded. The results of the study concluded that the materials observed under consistent dynamic high strain rate tests, which include Conathane® EN-4/9, Slygard®-184, and Stycast™-2651, behaved well in certain aspects of energy transmission and shock when considering the frequency environment or package coupled with the isolation material’s application. Key points about the implementation of the materials in extreme shock environments is discussed with the connection to energy analysis, loss attributes, and pulse transmissibility modeling. However, attempts to model the materials solely based on energy transmissibility in the frequency domain using only external experimental data and simplified boundary conditions was not found to be consistent with that acquired from the pressure bar experiments. Further work will include the addition of further material experimentation of the encapsulants in other frequency and temperature states, confined and pre-load boundary states, and composite constructions.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
1334949
Report Number(s):
SAND2016-12210T; 649622
Country of Publication:
United States
Language:
English