skip to main content

SciTech ConnectSciTech Connect

Title: Modeling the Free Carrier Recombination Kinetics in PTB7:PCBM Organic Photovoltaics

Currently the exact recombination mechanism of free carriers in organic photovoltaic (OPV) devices is poorly understood. Often a reduced Langevin model is used to describe the decay behavior of electrons and holes. Here we propose a novel, simple kinetic model that accurately describes the decay behavior of free carriers in the PTB7:PCBM organic photovoltaic blend. This model needs to only take into account free and trapped holes in the polymer, and free electrons in the fullerene, to accurately describe the recombination behavior of free carriers as measured by time-resolved microwave conductivity (TRMC). The model is consistent for different PTB7:PCBM blend ratios and spans a light intensity range of over 3 orders of magnitude. The model demonstrates that dark carriers exist in the polymer and interact with photoinduced charge carriers, and that the trapping and detrapping rates of the holes are of high importance to the overall carrier lifetime.
; ; ; ;
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 1932-7447
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Physical Chemistry. C; Journal Volume: 120; Journal Issue: 43
American Chemical Society
Research Org:
NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States))
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Country of Publication:
United States
14 SOLAR ENERGY; 36 MATERIALS SCIENCE organic photovoltaics; kinetic model; recombination; time-resolved microwave conductivity