skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Templating Routes to Supported Oxide Catalysts by Design

Technical Report ·
DOI:https://doi.org/10.2172/1322744· OSTI ID:1322744
 [1]
  1. Northwestern Univ., Evanston, IL (United States)

The rational design and understanding of supported oxide catalysts requires at least three advancements, in order of increasing complexity: the ability to quantify the number and nature of active sites in a catalytic material, the ability to place external controls on the number and structure of these active sites, and the ability to assemble these active sites so as to carry out more complex functions in tandem. As part of an individual investigator research program that is integrated with the Northwestern University Institute for Catalysis in Energy Processes (ICEP) as of 2015, significant advances were achieved in these three areas. First, phosphonic acids were utilized in the quantitative assessment of the number of active and geometrically-available sites in MOx-SiO2 catalysts, including nanocrystalline composites, co-condensed materials, and grafted structures, for M=Ti, Zr, Hf, Nb, and Ta. That work built off progress in understanding supported Fe, Cu, and Co oxide catalysts from chelating and/or multinuclear precursors to maximize surface reactivity. Secondly, significant progress was made in the new area of using thin oxide overcoats containing ‘nanocavities’ from organic templates as a method to control the dispersion and thermal stability of subsequently deposited metal nanoparticles or other catalytic domains. Similar methods were used to control surface reactivity in SiO2-Al2O3 acid catalysts and to control reactant selectivity in Al2O3-TiO2 photocatalysts. Finally, knowledge gained from the first two areas has been combined to synthesize a tandem catalyst for hydrotreating reactions and an orthogonal tandem catalyst system where two subsequent reactions in a reaction network are independently controlled by light and heat. Overall, work carried out under this project significantly advanced the knowledge of synthesis-structure-function relationships in supported oxide catalysts for energy applications.

Research Organization:
Northwestern Univ., Evanston, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
SC0006718
OSTI ID:
1322744
Report Number(s):
DOE-NU-SC0006718
Country of Publication:
United States
Language:
English