skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electromagnetic Extended Finite Elements for High-Fidelity Multimaterial Problems LDRD Final Report

Technical Report ·
DOI:https://doi.org/10.2172/1322284· OSTI ID:1322284

Surface effects are critical to the accurate simulation of electromagnetics (EM) as current tends to concentrate near material surfaces. Sandia EM applications, which include exploding bridge wires for detonator design, electromagnetic launch of flyer plates for material testing and gun design, lightning blast-through for weapon safety, electromagnetic armor, and magnetic flux compression generators, all require accurate resolution of surface effects. These applications operate in a large deformation regime, where body-fitted meshes are impractical and multimaterial elements are the only feasible option. State-of-the-art methods use various mixture models to approximate the multi-physics of these elements. The empirical nature of these models can significantly compromise the accuracy of the simulation in this very important surface region. We propose to substantially improve the predictive capability of electromagnetic simulations by removing the need for empirical mixture models at material surfaces. We do this by developing an eXtended Finite Element Method (XFEM) and an associated Conformal Decomposition Finite Element Method (CDFEM) which satisfy the physically required compatibility conditions at material interfaces. We demonstrate the effectiveness of these methods for diffusion and diffusion-like problems on node, edge and face elements in 2D and 3D. We also present preliminary work on h -hierarchical elements and remap algorithms.

Research Organization:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)
DOE Contract Number:
AC04-94AL85000
OSTI ID:
1322284
Report Number(s):
SAND2014-17921; 537662
Country of Publication:
United States
Language:
English

Similar Records

Cutting Tetrahedra by Node Identifiers
Technical Report · Fri May 01 00:00:00 EDT 2015 · OSTI ID:1322284

XFEM: Exploratory Research into the Extended Finite-Element Method, FY02 LDRD Final Report
Technical Report · Wed Feb 26 00:00:00 EST 2003 · OSTI ID:1322284

ALEGRA : an arbitrary Lagrangian-Eulerian multimaterial, multiphysics code.
Conference · Tue Jan 01 00:00:00 EST 2008 · OSTI ID:1322284