skip to main content

Title: Muon Beam Tracking and Spin-Orbit Correlations for Precision g-2 Measurements

The main goal of the Muon g-2 Experiment (g-2) at Fermilab is to measure the muon anomalous magnetic moment to unprecedented precision. This new measurement will allow to test the completeness of the Standard Model (SM) and to validate other theoretical models beyond the SM. The close interplay of the understanding of particle beam dynamics and the preparation of the beam properties with the experimental measurement is tantamount to the reduction of systematic errors in the determination of the muon anomalous magnetic moment. We describe progress in developing detailed calculations and modeling of the muon beam delivery system in order to obtain a better understanding of spin-orbit correlations, nonlinearities, and more realistic aspects that contribute to the systematic errors of the g-2 measurement. Our simulation is meant to provide statistical studies of error effects and quick analyses of running conditions for when g-2 is taking beam, among others. We are using COSY, a differential algebra solver developed at Michigan State University that will also serve as an alternative to compare results obtained by other simulation teams of the g-2 Collaboration.
 [1] ;  [1] ;  [1] ;  [1] ;  [2]
  1. Michigan State U., East Lansing (main)
  2. Fermilab
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: 7th International Particle Accelerator Conference, Busan, Korea, 05/08-05/13/2016
Research Org:
Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Country of Publication:
United States