skip to main content

SciTech ConnectSciTech Connect

This content will become publicly available on May 23, 2017

Title: Sub-5 nm, globally aligned graphene nanoribbons on Ge(001)

Graphene nanoribbons (GNRs) hold great promise for future electronics because of their edge and width dependent electronic bandgaps and exceptional transport properties. While significant progress toward such devices has been made, the field has been limited by difficulties achieving narrow widths, global alignment, and atomically pristine GNR edges on technologically relevant substrates. A recent advance has challenged these limits by using Ge(001) substrates to direct the bottom-up growth of GNRs with nearly pristine armchair edges and widths near ~10 nm via atmospheric pressure chemical vapor deposition. In this work, we extend the growth of GNRs on Ge(001) to ultra-high vacuum conditions and realize GNRs narrower than 5 nm. Armchair graphene nanoribbons directed along the Ge <110> surface directions are achieved with excellent width control and relatively large bandgaps. As a result, the bandgap magnitude and electronic uniformity make these new materials excellent candidates for future developments in nanoelectronics.
Authors:
 [1] ;  [1] ;  [2] ;  [3] ;  [2] ;  [4] ;  [3]
  1. Argonne National Lab. (ANL), Argonne, IL (United States); Northwestern Univ., Evanston, IL (United States)
  2. Univ. of Wisconsin, Madison, WI (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
  4. Northwestern Univ., Evanston, IL (United States)
Publication Date:
OSTI Identifier:
1275785
Grant/Contract Number:
AC02-06CH11357
Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 108; Journal Issue: 21; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); Office of Naval Research; National Science Foundation (NSF)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE