skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rigidity of poly-L-glutamic acid scaffolds: Influence of secondary and supramolecular structure

Journal Article · · Journal of Biomedical Materials Research. Part A
DOI:https://doi.org/10.1002/jbm.a.35427· OSTI ID:1261462
 [1];  [1];  [2];  [2];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

Poly-L-glutamic acid (PGA) is a widely used biomaterial, with applications ranging from drug delivery and biological glues to food products and as a tissue engineering scaffold. A biodegradable material with flexible conjugation functional groups, tunable secondary structure, and mechanical properties, PGA has potential as a tunable matrix material in mechanobiology. Some recent studies in proteins connecting dynamics, nanometer length scale rigidity, and secondary structure suggest a new point of view from which to analyze and develop this promising material. Our paper characterizes the structure, topology, and rigidity properties of PGA prepared with different molecular weights and secondary structures through various techniques including scanning electron microscopy, FTIR, light, and neutron scattering spectroscopy. On the length scale of a few nanometers, rigidity is determined by hydrogen bonding interactions in the presence of neutral species and by electrostatic interactions when the polypeptide is negatively charged. Finally, when probed over hundreds of nanometers, the rigidity of these materials is modified by long range intermolecular interactions that are introduced by the supramolecular structure.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-00OR22725
OSTI ID:
1261462
Journal Information:
Journal of Biomedical Materials Research. Part A, Vol. 103, Issue 9; ISSN 1549-3296
Country of Publication:
United States
Language:
English