skip to main content

This content will become publicly available on June 20, 2015

Title: Progress with the COGENT Edge Kinetic Code: Implementing the Fokker-Plank Collision Operator

Here, COGENT is a continuum gyrokinetic code for edge plasma simulations being developed by the Edge Simulation Laboratory collaboration. The code is distinguished by application of a fourth-order finite-volume (conservative) discretization, and mapped multiblock grid technology to handle the geometric complexity of the tokamak edge. The distribution function F is discretized in v∥ – μ (parallel velocity – magnetic moment) velocity coordinates, and the code presently solves an axisymmetric full-f gyro-kinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. COGENT capabilities are extended by implementing the fully nonlinear Fokker-Plank operator to model Coulomb collisions in magnetized edge plasmas. The corresponding Rosenbluth potentials are computed by making use of a finite-difference scheme and multipole-expansion boundary conditions. Details of the numerical algorithms and results of the initial verification studies are discussed. (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
 [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0863-1042
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Contributions to Plasma Physics
Additional Journal Information:
Journal Volume: 54; Journal Issue: 4-6; Journal ID: ISSN 0863-1042
Research Org:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org:
Country of Publication:
United States
70 PLASMA PHYSICS AND FUSION; 97 MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; edge; plasma; simulation; kinetic; gyrokinetic