skip to main content

Title: Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voidingmore » reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and fabrication capacity per unit of core power. Nevertheless, these high-performance cores were designed to set upper bounds on the S&B core performance by using larger height and pressure drop than those of typical SFR design. A study was subsequently undertaken to quantify the tradeoff between S&B core design variables and the core performance. This study concludes that a viable S&B core can be designed without significant deviation from SFR core design practices. For example, the S&B core with 120cm active height will be comparable in volume, HM mass and specific power with the S-PRISM core and could fit within the S-PRISM reactor vessel. 43% of this core power will be generated by the once-through thorium blanket; the required capacity for reprocessing and remote fuel fabrication per unit of electricity generated will be approximately one fifth of that for a comparable ABR. The sodium void worth of this 120cm tall S&B core is significantly less positive than that of the reference ABR and the Doppler coefficient is only slightly smaller even though the seed uses a fertile-free fuel. The seed in the high transmutation core requires inert matrix fuel (TRU-40Zr) that has been successfully irradiated by the Fuel Cycle Research & Development program. An additional sensitivity analysis was later conducted to remove the bias introduced by the discrepancy between radiation damage constraints -- 200 DPA applied for S&B cores and fast fluence of 4x1023 n(>0.1MeV)/cm2 applied for ABR core design. Although the performance characteristics of the S&B cores are sensitive to the radiation damage constraint applied, the S&B cores offer very significant performance improvements relative to the conventional ABR core design when using identical constraint.« less
  1. Univ. of California, Berkeley, CA (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Battelle Energy Alliance, LLC, Idaho Falls, ID (United States)
Sponsoring Org:
USDOE Office of Nuclear Energy (NE)
Country of Publication:
United States