skip to main content

Title: High antiferromagnetic transition temperature of a honeycomb compound SrRu2O6

We study the high-temperature magnetic order in a quasi-two-dimensional honeycomb compound SrRu2O6 by measuring magnetization and neutron powder diffraction with both polarized and unpolarized neutrons. SrRu2O6 crystallizes into the hexagonal lead antimonate (PbSb2O6, space group P31m) structure with layers of edge-sharing RuO6 octahedra separated by Sr2+ ions. SrRu2O6 is found to order at TN = 565 K with Ru moments coupled antiferromagnetically both in plane and out of plane. The magnetic moment is 1.30(2) μB/Ru at room temperature and is along the crystallographic c axis in the G-type magnetic structure. We perform density functional calculations with constrained random-phase approximation (RPA) to obtain the electronic structure and effective intra- and interorbital interaction parameters. The projected density of states shows strong hybridization between Ru 4d and O 2p. By downfolding to the target t2g bands we extract the effective magnetic Hamiltonian and perform Monte Carlo simulations to determine the transition temperature as a function of interand intraplane couplings. We find a weak interplane coupling, 3% of the strong intraplane coupling, permits three-dimensional magnetic order at the observed TN .
 [1] ;  [2] ;  [3] ;  [1] ;  [1] ;  [4] ;  [1] ;  [5] ;  [3] ;  [2] ;  [5]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. The Ohio State Univ., Columbus, OH (United States)
  3. RIKEN Center for Emergent Matter Science (CEMS), Wako (Japan)
  4. Beijing National Lab for Condensed Matter Physics, Chinese Academy of Sciences
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
Publication Date:
OSTI Identifier:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Physical Review. B, Condensed Matter and Materials Physics
Additional Journal Information:
Journal Volume: 92; Journal Issue: 10; Journal ID: ISSN 1098-0121
American Physical Society (APS)
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States