skip to main content

SciTech ConnectSciTech Connect

Title: Analysis of the FeCrAl Accident Tolerant Fuel Concept Benefits during BWR Station Blackout Accidents

Iron-chromium-aluminum (FeCrAl) alloys are being considered for fuel concepts with enhanced accident tolerance. FeCrAl alloys have very slow oxidation kinetics and good strength at high temperatures. FeCrAl could be used for fuel cladding in light water reactors and/or as channel box material in boiling water reactors (BWRs). To estimate the potential safety gains afforded by the FeCrAl concept, the MELCOR code was used to analyze a range of postulated station blackout severe accident scenarios in a BWR/4 reactor employing FeCrAl. The simulations utilize the most recently known thermophysical properties and oxidation kinetics for FeCrAl. Overall, when compared to the traditional Zircaloy-based cladding and channel box, the FeCrAl concept provides a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. Finally, due to the slower oxidation kinetics, substantially less hydrogen is generated, and the generation is delayed in time. This decreases the amount of non-condensable gases in containment and the potential for deflagrations to inhibit the accident response.
Authors:
 [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
OSTI Identifier:
1213328
DOE Contract Number:
DE-AC05-00OR22725
Resource Type:
Conference
Resource Relation:
Conference: 16th International Topical Meeting on Nuclear Reactor Thermalhydraulics, Chicago, IL, USA, 20150830, 20150830
Research Org:
Oak Ridge National Laboratory (ORNL)
Sponsoring Org:
NE USDOE - Office of Nuclear Energy
Country of Publication:
United States
Language:
English
Subject:
21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; 11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS FeCrAl; ATF; Severe Accident; Station Blackout; MELCOR