skip to main content

Title: An ultra-compact and low loss passive beam-forming network integrated on chip with off chip linear array

The work here presents a review of beam forming architectures. As an example, the author presents an 8x8 Butler Matrix passive beam forming network including the schematic, design/modeling, operation, and simulated results. The limiting factor in traditional beam formers has been the large size dictated by transmission line based couplers. By replacing these couplers with transformer-based couplers, the matrix size is reduced substantially allowing for on chip compact integration. In the example presented, the core area, including the antenna crossover, measures 0.82mm×0.39mm (0.48% the size of a branch line coupler at the same frequency). The simulated beam forming achieves a peak PNR of 17.1 dB and 15dB from 57 to 63GHz. At the 60GHz center frequency the average insertion loss is simulated to be 3.26dB. The 8x8 Butler Matrix feeds into an 8-element antenna array to show the array patterns with single beam and adjacent beam isolation.
Authors:
 [1]
  1. Georgia Inst. of Technology, Atlanta, GA (United States)
Publication Date:
OSTI Identifier:
1206957
Report Number(s):
SAND2015--6175T
598597
DOE Contract Number:
AC04-94AL85000
Resource Type:
Thesis/Dissertation
Research Org:
Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE National Nuclear Security Administration (NNSA)
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS