skip to main content

Title: Sub-Second Parallel State Estimation

This report describes the performance of Pacific Northwest National Laboratory (PNNL) sub-second parallel state estimation (PSE) tool using the utility data from the Bonneville Power Administrative (BPA) and discusses the benefits of the fast computational speed for power system applications. The test data were provided by BPA. They are two-days’ worth of hourly snapshots that include power system data and measurement sets in a commercial tool format. These data are extracted out from the commercial tool box and fed into the PSE tool. With the help of advanced solvers, the PSE tool is able to solve each BPA hourly state estimation problem within one second, which is more than 10 times faster than today’s commercial tool. This improved computational performance can help increase the reliability value of state estimation in many aspects: (1) the shorter the time required for execution of state estimation, the more time remains for operators to take appropriate actions, and/or to apply automatic or manual corrective control actions. This increases the chances of arresting or mitigating the impact of cascading failures; (2) the SE can be executed multiple times within time allowance. Therefore, the robustness of SE can be enhanced by repeating the execution of themore » SE with adaptive adjustments, including removing bad data and/or adjusting different initial conditions to compute a better estimate within the same time as a traditional state estimator’s single estimate. There are other benefits with the sub-second SE, such as that the PSE results can potentially be used in local and/or wide-area automatic corrective control actions that are currently dependent on raw measurements to minimize the impact of bad measurements, and provides opportunities to enhance the power grid reliability and efficiency. PSE also can enable other advanced tools that rely on SE outputs and could be used to further improve operators’ actions and automated controls to mitigate effects of severe events on the grid. The power grid continues to grow and the number of measurements is increasing at an accelerated rate due to the variety of smart grid devices being introduced. A parallel state estimation implementation will have better performance than traditional, sequential state estimation by utilizing the power of high performance computing (HPC). This increased performance positions parallel state estimators as valuable tools for operating the increasingly more complex power grid.« less
 [1] ;  [1] ;  [1] ;  [1] ;  [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Technical Report
Research Org:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org:
Country of Publication:
United States