skip to main content

Title: Helical antiferromagnetic ordering in Lu1-xScxMnSi

Polycrystalline samples of Lu 1-xSc xMnSi (x=0, 0.25, 0.5) are studied using powder x-ray diffraction, heat capacity Cp, magnetization, magnetic susceptibility χ, and electrical resistivity ρ measurements versus temperature T and magnetic field H. This system crystallizes in the primitive orthorhombic TiNiSi-type structure (space group Pnma) as previously reported. The ρ(T) data indicate metallic behavior. The Cp(T), χ(T), and ρ(T) measurements consistently indicate long-range antiferromagnetic (AF) transitions with AF ordering temperatures TN=246, 215, and 188 K for x=0, 0.25, and 0.5, respectively. A second transition is observed at somewhat lower T for each sample from the χ(T) and ρ(T) measurements, which we speculate are due to spin reorientation transitions; these second transitions are completely suppressed in H=5.5 T. The Cp data below 10 K for each composition indicate an enhanced Sommerfeld electronic heat capacity coefficient for the series in the range γ=24–29 mJ/mol K2. The χ(T) measurements up to 1000 K were fitted by local-moment Curie-Weiss behaviors which indicate a low Mn spin S~1. The χ data below TN are analyzed using the Weiss molecular field theory for a planar noncollinear cycloidal AF structure with a composition-dependent pitch, following the previous neutron diffraction work of Venturini et al. [J. Alloysmore » Compd. 256, 65 (1997)]. Within this model, the fits indicate a turn angle between Mn ordered moments along the cycloid axis of ~100° or ~145°, either of which indicate dominant AF interactions between the Mn spins in the Lu 1-xSc xMnSi series of compounds.« less
 [1] ;  [1] ;  [1]
  1. Ames Laboratory
Publication Date:
OSTI Identifier:
Report Number(s):
IS-J 8467
Journal ID: ISSN 1098-0121; PRBMDO; ArticleNumber: 064415
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review. B, Condensed Matter and Materials Physics; Journal Volume: 90; Journal Issue: 6
American Physical Society (APS)
Research Org:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States