skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Millennial-scale ocean acidification and late Quaternary

Journal Article · · Geobiology
DOI:https://doi.org/10.1111/gbi.12097· OSTI ID:1156762
 [1];  [2];  [3]
  1. University of Tennessee (UT)
  2. ORNL
  3. Universidad de Granada, Departamento de Estratigrafıa y Paleontologıa, Granada, Spain

Ocean acidification by atmospheric carbon dioxide has increased almost continuously since the last glacial maximum (LGM), 21 000 years ago. It is expected to impair tropical reef development, but effects on reefs at the present day and in the recent past have proved difficult to evaluate. We present evidence that acidification has already significantly reduced the formation of calcified bacterial crusts in tropical reefs. Unlike major reef builders such as coralline algae and corals that more closely control their calcification, bacterial calcification is very sensitive to ambient changes in carbonate chemistry. Bacterial crusts in reef cavities have declined in thickness over the past 14 000 years with largest reduction occurring 12 000 10 000 years ago. We interpret this as an early effect of deglacial ocean acidification on reef calcification and infer that similar crusts were likely to have been thicker when seawater carbonate saturation was increased during earlier glacial intervals, and thinner during interglacials. These changes in crust thickness could have substantially affected reef development over glacial cycles, as rigid crusts significantly strengthen framework and their reduction would have increased the susceptibility of reefs to biological and physical erosion. Bacterial crust decline reveals previously unrecognized millennial-scale acidification effects on tropical reefs. This directs attention to the role of crusts in reef formation and the ability of bioinduced calcification to reflect changes in seawater chemistry. It also provides a long-term context for assessing anticipated anthropogenic effects.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
ORNL other overhead
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1156762
Journal Information:
Geobiology, Vol. 12, Issue 5; ISSN 1472-4677
Country of Publication:
United States
Language:
English

Similar Records

Early detection of ocean acidification effects on marine calcification
Journal Article · Thu Feb 19 00:00:00 EST 2009 · GLOBAL BIOGEOCHEMICAL CYCLES · OSTI ID:1156762

Temperature and surface-ocean water balance of the mid-holocene tropical western Pacific
Journal Article · Fri Feb 13 00:00:00 EST 1998 · Science · OSTI ID:1156762

A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin
Journal Article · Thu May 21 00:00:00 EDT 2015 · Biogeosciences (Online) · OSTI ID:1156762