skip to main content

SciTech ConnectSciTech Connect

Title: Effects of Second-Order Hydrodynamic Forces on Floating Offshore Wind Turbines

Relative to first-order, second-order wave-excitation loads are known to cause significant motions and additional loads in offshore oil and gas platforms. The design of floating offshore wind turbines was partially inherited from the offshore oil and gas industry. Floating offshore wind concepts have been studied with powerful aero-hydro-servo-elastic tools; however, most of the existing work on floating offshore wind turbines has neglected the contribution of second-order wave-excitation loads. As a result, this paper presents a computationally efficient methodology to consider these loads within FAST, a wind turbine computer-aided engineering tool developed by the National Renewable Energy Laboratory. The method implemented was verified against the commercial OrcaFlex tool, with good agreement, and low computational time. A reference floating offshore wind turbine was studied under several wind and wave load conditions, including the effects of second-order slow-drift and sum-frequency loads. Preliminary results revealed that these loads excite the turbine's natural frequencies, namely the surge and pitch natural frequencies.
Authors:
; ;
Publication Date:
OSTI Identifier:
1127272
DOE Contract Number:
AC36-08GO28308
Resource Type:
Conference
Resource Relation:
Conference: Presented at AIAA SciTech 2014, 13-17 January 2014, National Harbor, Maryland
Research Org:
National Renewable Energy Laboratory (NREL), Golden, CO.
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy Wind and Water Power Technologies Office
Country of Publication:
United States
Language:
English
Subject:
17 WIND ENERGY; 13 HYDRO ENERGY; 42 ENGINEERING OFFSHORE WIND TURBINES; FAST; COMPUTER-AIDED ENGINEERING; NREL; Wind Energy