skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Role of Sulfhydryl Sites on Bacterial Cell Walls in the Biosorption, Mobility and Bioavailability of Mercury and Uranium

Technical Report ·
DOI:https://doi.org/10.2172/1111104· OSTI ID:1111104

The goal of this exploratory study is to provide a quantitative and mechanistic understanding of the impact of bacterial sulfhydryl groups on the bacterial uptake, speciation, methylation and bioavailability of Hg and redox changes of uranium. The relative concentration and reactivity of different functional groups present on bacterial surfaces will be determined, enabling quantitative predictions of the role of biosorption of Hg under the physicochemical conditions found at contaminated DOE sites.The hypotheses we propose to test in this investigation are as follows- 1) Sulfhydryl groups on bacterial cell surfaces modify Hg speciation and solubility, and play an important role, specifically in the sub-micromolar concentration ranges of metals in the natural and contaminated systems. 2) Sulfhydryl binding of Hg on bacterial surfaces significantly influences Hg transport into the cell and the methylation rates by the bacteria. 3) Sulfhydryls on cell membranes can interact with hexavalent uranium and convert to insoluble tetravalent species. 4) Bacterial sulfhydryl surface groups are inducible by the presence of metals during cell growth. Our studies focused on the first hypothesis, and we examined the nature of sulfhydryl sites on three representative bacterial species: Bacillus subtilis, a common gram-positive aerobic soil species; Shewanella oneidensis, a facultative gram-negative surface water species; and Geobacter sulfurreducens, an anaerobic iron-reducing gram-negative species that is capable of Hg methylation; and at a range of Hg concentration (and Hg:bacterial concentration ratio) in which these sites become important. A summary of our findings is as follows- Hg adsorbs more extensively to bacteria than other metals. Hg adsorption also varies strongly with pH and chloride concentration, with maximum adsorption occurring under circumneutral pH conditions for both Cl-bearing and Cl-free systems. Under these conditions, all bacterial species tested exhibit almost complete removal of Hg from the experimental solutions at relatively low bacterial concentrations. Synchrotron based X-ray spectroscopic studies of these samples indicate that the structure and the coordination environment of Hg surface complexes on bacterial cell walls change dramatically- with sulfhydryls as the dominant Hg-binding groups in the micromolar and submicromolar range, and carboxyls and phosphoryls dominating at high micromolar concentrations. Hg interactions change from a trigonal or T-shaped HgS{sub 3} complex to HgS or HgS{sub 2} type complexes as the Hg concentration increases in the submicromolar range. Although all bacterial species studied exhibited the same types of coordination environments for Hg, the relative concentrations of the complexes change as a function of Hg concentration.

Research Organization:
Princeton Univ., NJ (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
FG02-08ER64518
OSTI ID:
1111104
Report Number(s):
DOE-PRINCETON-64518
Country of Publication:
United States
Language:
English