skip to main content

Title: Beam characterization at the Neutron Radiography Reactor

The quality of a neutron-imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam's effective length-to-diameter ratio, neutron flux profile, energy spectrum, potential image quality, and beam divergence, is vital for producing quality radiographic images. This paper provides a characterization of the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam's effective length-to-diameter ratio and potential image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. The NRAD has an effective collimation ratio greater than 125, a beam divergence of 0.3 +_ 0.1 degrees, and a gold foil cadmium ratio of 2.7. The flux profile has been quantified and the facility is an ASTM Category 1 radiographic facility. Based on bare and cadmium covered foil activation results, the neutron energy spectrum used in the current MCNP model ofmore » the radiography beamline over-samples the thermal region of the neutron energy spectrum.« less
; ;
Publication Date:
OSTI Identifier:
Report Number(s):
Journal ID: ISSN 0029-5493
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Nuclear Engineering and Design; Journal Volume: 265
Research Org:
Idaho National Laboratory (INL)
Sponsoring Org:
Country of Publication:
United States
99 GENERAL AND MISCELLANEOUS neutron radiography reactor