skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: TEM Characterization of U-7Mo/Al-2Si Dispersion Fuel Irradiated to Intermediate and High Fission Densities

Journal Article · · Journal of Nuclear Materials

This paper will discuss the results of TEM analysis that was performed on two samples taken from the low flux and high flux sides of the fuel plate with U-7Mo fuel particles dispersed in U-2Si matrix. The corresponding local fission density of the fuel particles and the peak fuel plate centerline temperature between the low flux and high flux samples are 3.32 x 10{sup 27} f/m{sup 3} and 90 C, and 6.31 x 10{sup 27} f/m{sup 3} and 120 C, respectively. The results of this work showed the presence of a bubble superlattice within the U-7Mo grains that accommodated fission gases (e.g., Xe). The presence of this structure helps the U-7Mo exhibit a stable swelling behavior during irradiation. The Si-rich interaction layers that develop around the fuel particles at the U-7Mo/matrix interface during fuel plate fabrication and irradiation become amorphous during irradiation. The change in bubble distribution at the high fission density suggests that the bubble superlattice is stable as the U-7Mo matrix remains crystalline. It appears that there is a threshold Si content in the fuel particle above which the U-Mo turns to amorphous under irradiation. The threshold Si content is approximately 8 at.% and 4 at.% for low flux and high flux condition, respectively.

Research Organization:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Organization:
DOE - NE
DOE Contract Number:
DE-AC07-05ID14517
OSTI ID:
1045496
Report Number(s):
INL/JOU-11-21870; JNUMAM; TRN: US1203628
Journal Information:
Journal of Nuclear Materials, Vol. 424, Issue 1 - 3; ISSN 0022-3115
Country of Publication:
United States
Language:
English