skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Theoretical Study of Methanol Synthesis from CO(2) Hydrogenation on Metal-doped Cu(111) Surfaces

Journal Article · · Journal of Physical Chemistry C
OSTI ID:1043405

Density functional theory (DFT) calculations and Kinetic Monte Carlo (KMC) simulations were employed to investigate the methanol synthesis reaction from CO{sub 2} hydrogenation (CO{sub 2} + 3H{sub 2} {yields} CH{sub 3}OH + H{sub 2}O) on metal-doped Cu(111) surfaces. Both the formate pathway and the reverse water-gas shift (RWGS) reaction followed by a CO hydrogenation pathway (RWGS + CO-Hydro) were considered in the study. Our calculations showed that the overall methanol yield increased in the sequence: Au/Cu(111) < Cu(111) < Pd/Cu(111) < Rh/Cu(111) < Pt/Cu(111) < Ni/Cu(111). On Au/Cu(111) and Cu(111), the formate pathway dominates the methanol production. Doping Au does not help the methanol synthesis on Cu(111). Pd, Rh, Pt, and Ni are able to promote the methanol production on Cu(111), where the conversion via the RWGS + CO-Hydro pathway is much faster than that via the formate pathway. Further kinetic analysis revealed that the methanol yield on Cu(111) was controlled by three factors: the dioxomethylene hydrogenation barrier, the CO binding energy, and the CO hydrogenation barrier. Accordingly, two possible descriptors are identified which can be used to describe the catalytic activity of Cu-based catalysts toward methanol synthesis. One is the activation barrier of dioxomethylene hydrogenation, and the other is the CO binding energy. An ideal Cu-based catalyst for the methanol synthesis via CO{sub 2} hydrogenation should be able to hydrogenate dioxomethylene easily and bond CO moderately, being strong enough to favor the desired CO hydrogenation rather than CO desorption but weak enough to prevent CO poisoning. In this way, the methanol production via both the formate and the RWGS + CO-Hydro pathways can be facilitated.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
Sponsoring Organization:
USDOE SC OFFICE OF SCIENCE (SC)
DOE Contract Number:
DE-AC02-98CH10886
OSTI ID:
1043405
Report Number(s):
BNL-96294-2012-JA; R&D Project: CO-019; KC0302010; TRN: US201213%%353
Journal Information:
Journal of Physical Chemistry C, Vol. 116, Issue 1; ISSN 1932-7447
Country of Publication:
United States
Language:
English