skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Liquid CO2 Displacement of Water in a Dual-Permeability Pore Network Micromodel

Journal Article · · Environmental Science & Technology, 45(17):7581-7588
DOI:https://doi.org/10.1021/es201858r· OSTI ID:1024084

Permeability contrasts exist in multilayer geological formations under consideration for carbon sequestration. To improve our understanding of heterogeneous pore-scale displacements, liquid CO2 (LCO2) - water displacement was evaluated in a pore network micromodel with two distinct permeability zones. Due to the low viscosity ratio (logM = -1.1), unstable displacement occurred at all injection rates over two orders of magnitude. LCO2 displaced water only in the high permeability zone at low injection rates with the mechanism shifting from capillary fingering to viscous fingering with increasing flow rate. At high injection rates, LCO2 displaced water in the low permeability zone with capillary fingering as the dominant mechanism. LCO2 saturation (SLCO2) as a function of injection rate was quantified using fluorescent microscopy. In all experiments, more than 50% of LCO2 resided in the active flowpaths, and this fraction increased as displacement transitioned from capillary to viscous fingering. A continuum-scale two-phase flow model with independently determined fluid and hydraulic parameters was used to predict SLCO2 in the dual-permeability field. Agreement with the micromodel experiments was obtained for low injection rates. However, the numerical model does not account for the unstable viscous fingering processes observed experimentally at higher rates and hence overestimated SLCO2.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1024084
Report Number(s):
PNNL-SA-81215; ESTHAG; 39094; 25677; 42321; 44394; TRN: US201119%%81
Journal Information:
Environmental Science & Technology, 45(17):7581-7588, Vol. 45, Issue 17; ISSN 0013-936X
Country of Publication:
United States
Language:
English