skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Impact of the 2008 Ice Storm on Moso Bamboo plantations in southeast China

Journal Article · · Journal of Geophysical Research
DOI:https://doi.org/10.1029/2009JG001234· OSTI ID:1015021

A massive ice and snow storm occurred in early 2008 in South China and caused extensive damage to forests. Thirty-six plots of moso bamboo (Phyllostachys pubescens) plantation were established following the ice storm in the central growth area of moso bamboo, Fenyi, Jiangxi province, China. The topographical condition and stand attributes, and the ice storm impact on moso bamboo plantations were investigated. We found that an average of 54.48% ( 17.58%) bamboo culms was damaged. The damage patterns included bending, snapping and uprooting, which accounted for 17.01% ( 7.28%), 22.37% ( 11.58%) and 15.11% ( 11.54%) of the total respectively. An average of 16.42 ( 7.09) tons per hectare dead dry biomass was produced, accounting for 37.73% ( 14.41%) of total aboveground biomass. A mean value of 8.21 ( 3.55) Mg C per hectare was shifted from living biomass to dead. Stand level analysis showed a significant increase in damage level and dead biomass production at north-oriented slopes, and with high stand density (between 3000 and 4500 culm/ha). High altitude caused a higher proportion of snapped culms but a lower proportion of uprooted. Analysis at individual culm level suggested that the susceptibility for a culm to break or uproot due to ice storm would rise as its diameter increased, while the susceptibility to bend would decline. The young (one year old) culm was more susceptible to snapping or bending while over-mature (>5 years old) culm was more susceptible to uprooting, implying it is a good managing practice to harvest mature culm timely.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
1015021
Journal Information:
Journal of Geophysical Research, Vol. 116; ISSN 0148--0227
Country of Publication:
United States
Language:
English