DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on Sun May 12 00:00:00 EDT 2024

Title: Electrochemically Dealloyed 3D Porous Copper Nanostructure as Anode Current Collector of Li-Metal Batteries

Abstract

Abstract The commercialization of high‐energy Li‐metal batteries is impeded by Li dendrites formed during electrochemical cycling and the safety hazards it causes. Here, a novel porous copper current collector that can effectively mitigate the dendritic growth of Li is reported. This porous Cu foil is fabricated via a simple two‐step electrochemical process, where Cu‐Zn alloy is electrodeposited on commercial copper foil and then Zn is electrochemically dissolved to form a 3D porous structure of Cu. The 3D porous Cu layers on average have a thickness of ≈14 um and porosity of ≈72%. This current collector can effectively suppress Li dendrites in cells cycled with a high areal capacity of 10 mAh cm −2 and under a high current density of 10 mA cm −2 . This electrochemical fabrication method is facile and scalable for mass production. Results of advanced in situ synchrotron X‐ray diffraction reveal the phase evolution of the electrochemical deposition and dealloying processes.

Authors:
 [1];  [1];  [2];  [3];  [2];  [1];  [1];  [1]; ORCiD logo [1]
  1. Georgia Institute of Technology, Atlanta, GA (United States)
  2. Brookhaven National Laboratory (BNL), Upton, NY (United States)
  3. Argonne National Laboratory (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States); Argonne National Laboratory (ANL), Argonne, IL (United States); SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF); National Science Foundation (NSF); USDOE
OSTI Identifier:
2319174
Alternate Identifier(s):
OSTI ID: 1973551
Report Number(s):
BNL-225363-2024-JAAM
Journal ID: ISSN 1613-6810
Grant/Contract Number:  
SC0012704; AC0206CH11357; AC02-76SF00515; CHE 2108688; DMR 2004878
Resource Type:
Accepted Manuscript
Journal Name:
Small
Additional Journal Information:
Journal Volume: 19; Journal Issue: 28; Journal ID: ISSN 1613-6810
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Ma, Yifan, Ma, Xuetian, Bai, Jianming, Xu, Wenqian, Zhong, Hui, Liu, Zhantao, Xiong, Shan, Yang, Lufeng, and Chen, Hailong. Electrochemically Dealloyed 3D Porous Copper Nanostructure as Anode Current Collector of Li-Metal Batteries. United States: N. p., 2023. Web. doi:10.1002/smll.202301731.
Ma, Yifan, Ma, Xuetian, Bai, Jianming, Xu, Wenqian, Zhong, Hui, Liu, Zhantao, Xiong, Shan, Yang, Lufeng, & Chen, Hailong. Electrochemically Dealloyed 3D Porous Copper Nanostructure as Anode Current Collector of Li-Metal Batteries. United States. https://doi.org/10.1002/smll.202301731
Ma, Yifan, Ma, Xuetian, Bai, Jianming, Xu, Wenqian, Zhong, Hui, Liu, Zhantao, Xiong, Shan, Yang, Lufeng, and Chen, Hailong. Fri . "Electrochemically Dealloyed 3D Porous Copper Nanostructure as Anode Current Collector of Li-Metal Batteries". United States. https://doi.org/10.1002/smll.202301731.
@article{osti_2319174,
title = {Electrochemically Dealloyed 3D Porous Copper Nanostructure as Anode Current Collector of Li-Metal Batteries},
author = {Ma, Yifan and Ma, Xuetian and Bai, Jianming and Xu, Wenqian and Zhong, Hui and Liu, Zhantao and Xiong, Shan and Yang, Lufeng and Chen, Hailong},
abstractNote = {Abstract The commercialization of high‐energy Li‐metal batteries is impeded by Li dendrites formed during electrochemical cycling and the safety hazards it causes. Here, a novel porous copper current collector that can effectively mitigate the dendritic growth of Li is reported. This porous Cu foil is fabricated via a simple two‐step electrochemical process, where Cu‐Zn alloy is electrodeposited on commercial copper foil and then Zn is electrochemically dissolved to form a 3D porous structure of Cu. The 3D porous Cu layers on average have a thickness of ≈14 um and porosity of ≈72%. This current collector can effectively suppress Li dendrites in cells cycled with a high areal capacity of 10 mAh cm −2 and under a high current density of 10 mA cm −2 . This electrochemical fabrication method is facile and scalable for mass production. Results of advanced in situ synchrotron X‐ray diffraction reveal the phase evolution of the electrochemical deposition and dealloying processes.},
doi = {10.1002/smll.202301731},
journal = {Small},
number = 28,
volume = 19,
place = {United States},
year = {Fri May 12 00:00:00 EDT 2023},
month = {Fri May 12 00:00:00 EDT 2023}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on May 12, 2024
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode
journal, September 2018


3D Porous Cu Current Collectors Derived by Hydrogen Bubble Dynamic Template for Enhanced Li Metal Anode Performance
journal, March 2019

  • Qiu, Hailong; Tang, Tianyu; Asif, Muhammad
  • Advanced Functional Materials, Vol. 29, Issue 19
  • DOI: 10.1002/adfm.201808468

Restructured rimous copper foam as robust lithium host
journal, April 2020


Unique 3D nanoporous/macroporous structure Cu current collector for dendrite-free lithium deposition
journal, February 2019


Lithiophilic Cu-CuO-Ni Hybrid Structure: Advanced Current Collectors Toward Stable Lithium Metal Anodes
journal, January 2018


Pathways for practical high-energy long-cycling lithium metal batteries
journal, February 2019


Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Flexible Nanofiber‐Reinforced Solid Polymer Lithium‐Ion Battery
journal, May 2019

  • Ren, Xiaolei; Turcheniuk, Kostiantyn; Wang, Fujia
  • Energy Technology, Vol. 7, Issue 9
  • DOI: 10.1002/ente.201900064

Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes
journal, June 2017

  • Zuo, Tong-Tong; Wu, Xiong-Wei; Yang, Chun-Peng
  • Advanced Materials, Vol. 29, Issue 29
  • DOI: 10.1002/adma.201700389

Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode
journal, September 2014

  • Yan, Kai; Lee, Hyun-Wook; Gao, Teng
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl503125u

N-Doped Graphene Modified 3D Porous Cu Current Collector toward Microscale Homogeneous Li Deposition for Li Metal Anodes
journal, May 2018

  • Zhang, Rui; Wen, Shuaiwei; Wang, Ning
  • Advanced Energy Materials, Vol. 8, Issue 23
  • DOI: 10.1002/aenm.201800914

Anodes for Rechargeable Lithium-Sulfur Batteries
journal, April 2015


Vertically Aligned Lithiophilic CuO Nanosheets on a Cu Collector to Stabilize Lithium Deposition for Lithium Metal Batteries
journal, April 2018

  • Zhang, Chen; Lv, Wei; Zhou, Guangmin
  • Advanced Energy Materials, Vol. 8, Issue 21
  • DOI: 10.1002/aenm.201703404

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Spherical Li Deposited inside 3D Cu Skeleton as Anode with Ultrastable Performance
journal, May 2018

  • Wang, Yanyan; Wang, Zhijie; Lei, Danni
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 24
  • DOI: 10.1021/acsami.8b04881

Vacuum distillation derived 3D porous current collector for stable lithium–metal batteries
journal, May 2018


Regulating Anions in the Solvation Sheath of Lithium Ions for Stable Lithium Metal Batteries
journal, January 2019


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Stable cycling of high-voltage lithium metal batteries in ether electrolytes
journal, July 2018


Compact 3D Copper with Uniform Porous Structure Derived by Electrochemical Dealloying as Dendrite-Free Lithium Metal Anode Current Collector
journal, March 2018

  • Zhao, Heng; Lei, Danni; He, Yan-Bing
  • Advanced Energy Materials, Vol. 8, Issue 19
  • DOI: 10.1002/aenm.201800266

Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Honeycomb‐Inspired Surface‐Patterned Cu@CuO Composite Current Collector for Lithium‐Ion Batteries
journal, June 2019


Advancing Lithium Metal Batteries
journal, May 2018


Electrosynthesis of Vertically Aligned Zinc Oxide Nanoflakes on 3D Porous Cu Foam Enables Dendrite-Free Li-Metal Anode
journal, July 2022

  • Luo, Geng; Yin, Xiaoguang; Liu, Dongqing
  • ACS Applied Materials & Interfaces, Vol. 14, Issue 29
  • DOI: 10.1021/acsami.2c09287

The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes
journal, January 2018


Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries
journal, December 2016

  • Zeng, Xian-Xiang; Yin, Ya-Xia; Li, Nian-Wu
  • Journal of the American Chemical Society, Vol. 138, Issue 49
  • DOI: 10.1021/jacs.6b10088

Wettable carbon felt framework for high loading Li-metal composite anode
journal, June 2019


Negatively Charged Holey Titania Nanosheets Added Electrolyte to Realize Dendrite‐Free Lithium Metal Battery
journal, January 2023


Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes
journal, May 2016


Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes
journal, May 2017

  • Zhang, Rui; Chen, Xiao-Ru; Chen, Xiang
  • Angewandte Chemie International Edition, Vol. 56, Issue 27
  • DOI: 10.1002/anie.201702099

Electro-deposition of the lithium metal anode on dendritic copper current collectors for lithium battery application
journal, March 2020


Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes
journal, August 2015

  • Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9058

Interface engineering for garnet-type electrolyte enables low interfacial resistance in solid-state lithium batteries
journal, November 2022


Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells
journal, January 2012

  • Zhamu, Aruna; Chen, Guorong; Liu, Chenguang
  • Energy Environ. Sci., Vol. 5, Issue 2
  • DOI: 10.1039/C2EE02911A

Recycling garnet-type electrolyte toward superior cycling performance for solid-state lithium batteries
journal, August 2022


Self-supporting lithiophilic N-doped carbon rod array for dendrite-free lithium metal anode
journal, May 2019


A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles
journal, December 2015

  • Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10101

Three-dimensional nanoporous Cu6Sn5/Cu composite from dealloying as anode for lithium ion batteries
journal, May 2018


Mesoporous copper-based metal glass as current collector for Li metal anode
journal, January 2023


The role of nanotechnology in the development of battery materials for electric vehicles
journal, December 2016


Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures
journal, January 2014

  • Huang, Cheng; Xiao, Jie; Shao, Yuyan
  • Nature Communications, Vol. 5, Issue 1, Article No. 3015
  • DOI: 10.1038/ncomms4015

Vertically Grown Edge-Rich Graphene Nanosheets for Spatial Control of Li Nucleation
journal, May 2018


Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives
journal, January 2011

  • Quartarone, Eliana; Mustarelli, Piercarlo
  • Chemical Society Reviews, Vol. 40, Issue 5
  • DOI: 10.1039/c0cs00081g

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte
journal, July 2016

  • Zhou, Weidong; Wang, Shaofei; Li, Yutao
  • Journal of the American Chemical Society, Vol. 138, Issue 30
  • DOI: 10.1021/jacs.6b05341

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362