DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Observation of the Electromagnetic Field Effect via Charge-Dependent Directed Flow in Heavy-Ion Collisions at the Relativistic Heavy Ion Collider

Journal Article · · Physical Review. X
 [1];  [2];  [3];  [4];  [5];  [6];  [6];  [7];  [5];  [8];  [9];  [5];  [10];  [11];  [5];  [12];  [13];  [14];  [15];  [15] more »;  [16];  [17];  [18];  [4];  [9];  [19];  [20];  [21];  [21];  [3];  [22];  [23];  [24];  [25];  [14];  [26]; ORCiD logo [27];  [26];  [28];  [23];  [27];  [29];  [29];  [30];  [31];  [3];  [23];  [11];  [5];  [32];  [33];  [6];  [34];  [22];  [11];  [35];  [29];  [30];  [36];  [37];  [31];  [29];  [38];  [39];  [40];  [41];  [42];  [29];  [20];  [43];  [26];  [36];  [44];  [45];  [46];  [26];  [45];  [15];  [1];  [36];  [21];  [20];  [38];  [27];  [43];  [26];  [47];  [43];  [22];  [40];  [23];  [16];  [31];  [28];  [28];  [48];  [4];  [11];  [37];  [24];  [15];  [46];  [22];  [49];  [36];  [50];  [30];  [12];  [38];  [28];  [14];  [29];  [35];  [5];  [29];  [51];  [22];  [9];  [5];  [9];  [9];  [6];  [21];  [16];  [29];  [29];  [5];  [29];  [32];  [29];  [26];  [41];  [36];  [50];  [50];  [28];  [50];  [14];  [35];  [26];  [52];  [43];  [48];  [53];  [48];  [48];  [20];  [4];  [2];  [48];  [29];  [3];  [29];  [14];  [43];  [44];  [48];  [5];  [27];  [29];  [27];  [16];  [54];  [35];  [22];  [55];  [48];  [33];  [56];  [56];  [20];  [33];  [5];  [17];  [6];  [44];  [34];  [5];  [23];  [30];  [20];  [26];  [31];  [37];  [33];  [37];  [22];  [29];  [57];  [9];  [37];  [29];  [29];  [22];  [5];  [58];  [9];  [14];  [30];  [44];  [44];  [9];  [51];  [6];  [55];  [28];  [43];  [44];  [14];  [35];  [6];  [59];  [22];  [41];  [5];  [38];  [58];  [29];  [34];  [46];  [37];  [58];  [18];  [37];  [51];  [29];  [60];  [61];  [14];  [60];  [10];  [5];  [29];  [27];  [15];  [34];  [46];  [46];  [35];  [26];  [27];  [50];  [48];  [26];  [27];  [50];  [6];  [43];  [46];  [62];  [32];  [20];  [41];  [45];  [55];  [9];  [41];  [50];  [16];  [43];  [50];  [63];  [44];  [18];  [21];  [20];  [29];  [50];  [9];  [64];  [22];  [61];  [37];  [5];  [23];  [29];  [54];  [65];  [66];  [29];  [2];  [29];  [67];  [50];  [29];  [68];  [55];  [29];  [5];  [55];  [41]; ORCiD logo [23];  [63];  [26];  [26];  [50];  [48];  [28];  [26];  [29];  [32];  [64];  [22];  [31];  [24];  [48];  [43];  [23];  [50];  [27];  [28];  [47];  [41];  [63];  [22];  [26];  [26];  [48];  [35];  [23];  [26];  [16];  [26];  [26];  [53];  [40];  [36];  [22];  [26];  [29];  [26];  [50];  [27];  [53];  [26];  [50];  [53];  [43];  [43];  [50];  [26];  [48];  [40];  [29];  [31];  [43];  [27];  [29];  [27];  [50];  [48];  [48];  [28];  [69];  [70] « less
  1. American University in Cairo, New Cairo 11835, Egypt
  2. Texas A&M University, College Station, Texas 77843
  3. Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic
  4. The Ohio State University, Columbus, Ohio 43210
  5. Joint Institute for Nuclear Research, Dubna 141 980
  6. Panjab University, Chandigarh 160014, India
  7. Variable Energy Cyclotron Centre, Kolkata 700064, India
  8. Alikhanov Institute for Theoretical and Experimental Physics NRC ”Kurchatov Institute,” Moscow 117218;National Research Nuclear University MEPhI, Moscow 115409
  9. National Research Nuclear University MEPhI, Moscow 115409
  10. Indian Institute Technology, Patna, Bihar 801106, India
  11. Abilene Christian University, Abilene, Texas 79699
  12. Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
  13. University of Houston, Houston, Texas 77204
  14. University of California, Riverside, California 92521
  15. University of Jammu, Jammu 180001, India
  16. State University of New York, Stony Brook, New York 11794
  17. ELTE Eötvös Loránd University, Budapest, Hungary H-1117
  18. Alikhanov Institute for Theoretical and Experimental Physics NRC ”Kurchatov Institute,” Moscow 117218
  19. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
  20. Yale University, New Haven, Connecticut 06520
  21. University of California, Davis, California 95616
  22. Lawrence Berkeley National Laboratory, Berkeley, California 94720
  23. University of California, Los Angeles, California 90095
  24. Indiana University, Bloomington, Indiana 47408
  25. National Institute of Technology Durgapur, Durgapur-713209, India
  26. Shandong University, Qingdao, Shandong 266237
  27. Fudan University, Shanghai, 200433
  28. Tsinghua University, Beijing 100084
  29. Brookhaven National Laboratory, Upton, New York 11973
  30. University of California, Berkeley, California 94720
  31. University of Illinois at Chicago, Chicago, Illinois 60607
  32. University of Heidelberg, Heidelberg 69120, Germany
  33. NRC ”Kurchatov Institute,” Institute of High Energy Physics, Protvino 142281
  34. Indian Institute of Science Education and Research (IISER), Berhampur 760010, India
  35. Kent State University, Kent, Ohio 44242
  36. Rice University, Houston, Texas 77251
  37. University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
  38. University of Kentucky, Lexington, Kentucky 40506-0055
  39. University of Calabria and INFN-Cosenza, Rende 87036, Italy
  40. National Cheng Kung University, Tainan 70101
  41. Purdue University, West Lafayette, Indiana 47907
  42. Southern Connecticut State University, New Haven, Connecticut 06515
  43. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000
  44. Temple University, Philadelphia, Pennsylvania 19122
  45. Valparaiso University, Valparaiso, Indiana 46383
  46. Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
  47. University of Chinese Academy of Sciences, Beijing, 101408
  48. Central China Normal University, Wuhan, Hubei 430079
  49. Brookhaven National Laboratory, Upton, New York 11973;State University of New York, Stony Brook, New York 11794
  50. University of Science and Technology of China, Hefei, Anhui 230026
  51. Lehigh University, Bethlehem, Pennsylvania 18015
  52. Guangxi Normal University, Guilin
  53. South China Normal University, Guangzhou, Guangdong 510631
  54. Warsaw University of Technology, Warsaw 00-661, Poland
  55. Wayne State University, Detroit, Michigan 48201
  56. National Institute of Science Education and Research, HBNI, Jatni 752050, India
  57. Sejong University, Seoul, 05006, South Korea
  58. Rutgers University, Piscataway, New Jersey 08854
  59. University of Texas, Austin, Texas 78712
  60. Max-Planck-Institut für Physik, Munich 80805, Germany
  61. Creighton University, Omaha, Nebraska 68178
  62. Ball State University, Muncie, Indiana, 47306;Purdue University, West Lafayette, Indiana 47907
  63. Huzhou University, Huzhou, Zhejiang 313000
  64. Michigan State University, East Lansing, Michigan 48824
  65. University of California, Los Angeles, California 90095;Brookhaven National Laboratory, Upton, New York 11973
  66. Kent State University, Kent, Ohio 44242;Brookhaven National Laboratory, Upton, New York 11973
  67. Argonne National Laboratory, Argonne, Illinois 60439;Valparaiso University, Valparaiso, Indiana 46383
  68. NRC ”Kurchatov Institute,” Institute of High Energy Physics, Protvino 142281;National Research Nuclear University MEPhI, Moscow 115409
  69. Argonne National Laboratory, Argonne, Illinois 60439;Brookhaven National Laboratory, Upton, New York 11973
  70. Frankfurt Institute for Advanced Studies FIAS, Frankfurt 60438, Germany

The deconfined quark-gluon plasma (QGP) created in relativistic heavy-ion collisions enables the exploration of the fundamental properties of matter under extreme conditions. Noncentral collisions can produce strong magnetic fields on the order of 1018 G, which offers a probe into the electrical conductivity of the QGP. In particular, quarks and antiquarks carry opposite charges and receive contrary electromagnetic forces that alter their momenta. This phenomenon can be manifested in the collective motion of final-state particles, specifically in the rapidity-odd directed flow, denoted as v1⁡(y). Here, we present the charge-dependent measurements of dv1/dy near midrapidities for π±, K±, and $$p⁡(\bar{p})$$ in Au+Au and isobar $$(^{96}_{44}Ru+^{96}_{44}Ru$$ and $$^{96}_{40}Zr+^{96}_{40}Zr)$$ collisions at $$\sqrt{s_{NN}}=200$$ GeV, and in Au+Au collisions at 27 GeV, recorded by the STAR detector at the Relativistic Heavy Ion Collider. The combined dependence of the v1 signal on collision system, particle species, and collision centrality can be qualitatively and semi-quantitatively understood as several effects on constituent quarks. While the results in central events can be explained by the u and d quarks transported from initial-state nuclei, those in peripheral events reveal the impacts of the electromagnetic field on the QGP. Our data put valuable constraints on the electrical conductivity of the QGP in theoretical calculations.

Research Organization:
Argonne National Laboratory (ANL), Argonne, IL (United States); Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Nuclear Physics (NP); National Science Foundation (NSF); National Natural Science Foundation of China (NSFC); National Research Foundation of Korea (NRF); Czech Science Foundation (GA CR); Government of India; National Science Centre (Poland) (NSC); Croatian Ministry of Science, Education and Sports; Bundesministerium für Bildung und Forschung (BMBF); Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan; Japan Society for the Promotion of Science (JSPS)
Contributing Organization:
STAR Collaboration; Lawrence Berkeley National Laboratory (LBNL)
Grant/Contract Number:
AC02-06CH11357; SC0012704
OSTI ID:
2311230
Alternate ID(s):
OSTI ID: 1971833; OSTI ID: 2523668
Report Number(s):
BNL-224223-2023-JAAM; 182181
Journal Information:
Physical Review. X, Vol. 14, Issue 1; ISSN 2160-3308
Publisher:
American Physical Society (APS)Copyright Statement
Country of Publication:
United States
Language:
English

References (73)

Strongly coupled quark-gluon plasma in heavy ion collisions journal July 2017
Electromagnetic field evolution in relativistic heavy-ion collisions journal May 2011
Event-by-event generation of electromagnetic fields in heavy-ion collisions journal April 2012
Impact of magnetic-field fluctuations on measurements of the chiral magnetic effect in collisions of isobaric nuclei journal March 2019
The effects of topological charge change in heavy ion collisions: “Event by event and violation” journal May 2008
Comments about the electromagnetic field in heavy-ion collisions journal September 2014
Incomplete electromagnetic response of hot QCD matter journal April 2022
Dynamic magnetic response of the quark-gluon plasma to electromagnetic fields journal July 2022
Superconductivity of QCD vacuum in strong magnetic field journal October 2010
Chiral density waves in quark matter within the Nambu–Jona-Lasinio model in an external magnetic field journal October 2010
Spontaneous Electromagnetic Superconductivity of Vacuum in a Strong Magnetic Field: Evidence from the Nambu–Jona-Lasinio Model journal April 2011
Chiral Magnetic Wave at Finite Baryon Density and the Electric Quadrupole Moment of the Quark-Gluon Plasma journal July 2011
Electromagnetic fields and anomalous transports in heavy-ion collisions—a pedagogical review journal June 2016
Novel quantum phenomena induced by strong magnetic fields in heavy-ion collisions journal January 2017
Chiral magnetic effect reveals the topology of gauge fields in heavy-ion collisions journal November 2020
Chiral magnetic effect journal October 2008
Chiral magnetic and vortical effects in high-energy nuclear collisions—A status report journal May 2016
Catalysis of Dynamical Flavor Symmetry Breaking by a Magnetic Field in 2 + 1 Dimensions journal December 1994
Catalysis of Dynamical Flavor Symmetry Breaking by a Magnetic Field in 2 + 1 Dimensions journal February 1996
Synchrotron radiation by fast fermions in heavy-ion collisions journal September 2010
Erratum: Synchrotron radiation by fast fermions in heavy-ion collisions [Phys. Rev. C 82 , 034904 (2010)] journal March 2011
Phase diagram of hot QCD in an external magnetic field: Possible splitting of deconfinement and chiral transitions journal November 2010
Enhancement of flow Anisotropies due to Magnetic Field in Relativistic Heavy-Ion Collisions journal October 2011
On viscous flow and azimuthal anisotropy of the quark–gluon plasma in a strong magnetic field journal January 2012
Directed flow of charm quarks as a witness of the initial strong magnetic field in ultra-relativistic heavy ion collisions journal May 2017
Charge-dependent flow as evidence of strong electromagnetic fields in heavy-ion collisions journal October 2020
Charge-dependent flow induced by magnetic and electric fields in heavy ion collisions journal November 2018
Magnetohydrodynamics, charged currents, and directed flow in heavy ion collisions journal May 2014
Charge-dependent anisotropic flow in high-energy heavy-ion collisions from a relativistic resistive magneto-hydrodynamic expansion journal March 2023
Charge-Dependent Directed Flow in Cu + Au Collisions at s N N = 200     GeV journal January 2017
Azimuthal anisotropy in Cu+Au collisions at s NN = 200 GeV journal July 2018
Methods for analyzing anisotropic flow in relativistic nuclear collisions journal September 1998
Ultrarelativistic nuclear collisions: Direction of spectator flow journal August 2016
Directed Flow at Midrapidity in Heavy-Ion Collisions journal March 2011
Collective Flow and Viscosity in Relativistic Heavy-Ion Collisions journal October 2013
Directed flow in Au+Au collisions at s NN = 62.4 GeV journal March 2006
System-Size Independence of Directed Flow Measured at the BNL Relativistic Heavy-Ion Collider journal December 2008
Directed and elliptic flow of charged particles in Cu + Cu collisions at s N N = 22.4 GeV journal January 2012
Directed Flow of Identified Particles in Au + Au Collisions at S N N = 200     GeV at RHIC journal May 2012
Beam-Energy Dependence of the Directed Flow of Protons, Antiprotons, and Pions in Au+Au Collisions journal April 2014
Beam-Energy Dependence of Directed Flow of Λ , Λ ¯ , K ± , K s 0 , and ϕ in Au + Au Collisions journal February 2018
First Observation of the Directed Flow of D 0 and D 0 ¯ in Au + Au Collisions at s N N = 200     GeV journal October 2019
Beam-energy dependence of the directed flow of deuterons in Au+Au collisions journal October 2020
Directed Flow of Charged Particles at Midrapidity Relative to the Spectator Plane in Pb-Pb Collisions at s NN = 2.76     TeV journal December 2013
Elliptic Flow at Large Transverse Momenta from Quark Coalescence journal August 2003
Constituent quark scaling violation due to baryon number transport journal October 2011
Evidence of coalescence sum rule in elliptic flow of identified particles in high-energy heavy-ion collisions journal December 2020
Scaling distributions of quarks, mesons, and proton for all p T , energy, and centrality journal June 2003
Hadronization in Heavy-Ion Collisions: Recombination and Fragmentation of Partons journal May 2003
Parton Coalescence and the Antiproton/Pion Anomaly at RHIC journal May 2003
Probing the Effects of Strong Electromagnetic Fields with Charge-Dependent Directed Flow in Pb-Pb Collisions at the LHC journal July 2020
Directed flow of transported and nontransported protons in Au + Au collisions from an ultrarelativistic quantum molecular dynamics model journal October 2012
Energy dependence study of directed flow inAu+Aucollisions using an improved coalescence in a multiphase transport model journal November 2019
Splitting of proton-antiproton directed flow in relativistic heavy-ion collisions journal December 2022
Centrality dependence of identified particle elliptic flow in relativistic heavy ion collisions at s N N = 7.7 – 62.4 GeV journal January 2016
The STAR time projection chamber: a unique tool for studying high multiplicity events at RHIC
  • Anderson, M.; Berkovitz, J.; Betts, W.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 499, Issue 2-3 https://doi.org/10.1016/S0168-9002(02)01964-2
journal March 2003
The STAR Vertex Position Detector
  • Llope, W. J.; Zhou, J.; Nussbaum, T.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 759 https://doi.org/10.1016/j.nima.2014.04.080
journal September 2014
Glauber Modeling in High-Energy Nuclear Collisions journal November 2007
Systematic measurements of identified particle spectra in pp , d + Au , and Au + Au collisions at the STAR detector journal March 2009
Search for the chiral magnetic effect with isobar collisions at s N N = 200 GeV by the STAR Collaboration at the BNL Relativistic Heavy Ion Collider journal January 2022
The TOFp/pVPD time-of-flight system for STAR
  • Llope, W. J.; Geurts, F.; Mitchell, J. W.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 522, Issue 3 https://doi.org/10.1016/j.nima.2003.11.414
journal April 2004
A method to improve tracking and particle identification in TPCs and silicon detectors journal June 2006
The RHIC zero degree calorimeters
  • Adler, C.; Denisov, A.; Garcia, E.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 470, Issue 3 https://doi.org/10.1016/S0168-9002(01)00627-1
journal September 2001
The STAR event plane detector
  • Adams, J.; Ewigleben, A.; Garrett, S.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 968 https://doi.org/10.1016/j.nima.2020.163970
journal July 2020
Proton and pion production relative to the reaction plane in Au + Au collisions at 11 A GeV/ c journal December 1997
Antiflow of nucleons at the softest point of the equation of state journal January 2000
Microscopic models for ultrarelativistic heavy ion collisions journal January 1998
Thermal dilepton rate and electrical conductivity: An analysis of vector current correlation functions in quenched lattice QCD journal February 2011
On the temperature dependence of the electrical conductivity in hot quenched lattice QCD journal April 2012
Thermal correlators in the ρ channel of two-flavor QCD journal March 2013
Electrical Conductivity of the Quark-Gluon Plasma Across the Deconfinement Transition journal October 2013
Total cross section of the reaction pp→pK+Λ close to threshold journal February 1998
Charge-dependent directed flows in heavy-ion collisions by Boltzmann-Maxwell equations journal August 2022

Figures / Tables (7)