DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Homologous mutations in human β, embryonic, and perinatal muscle myosins have divergent effects on molecular power generation

Abstract

Mutations at a highly conserved homologous residue in three closely related muscle myosins cause three distinct diseases involving muscle defects: R671C in β-cardiac myosin causes hypertrophic cardiomyopathy, R672C and R672H in embryonic skeletal myosin cause Freeman–Sheldon syndrome, and R674Q in perinatal skeletal myosin causes trismus-pseudocamptodactyly syndrome. It is not known whether their effects at the molecular level are similar to one another or correlate with disease phenotype and severity. To this end, we investigated the effects of the homologous mutations on key factors of molecular power production using recombinantly expressed human β, embryonic, and perinatal myosin subfragment-1. We found large effects in the developmental myosins but minimal effects in β myosin, and magnitude of changes correlated partially with clinical severity. The mutations in the developmental myosins dramatically decreased the step size and load-sensitive actin-detachment rate of single molecules measured by optical tweezers, in addition to decreasing overall enzymatic (ATPase) cycle rate. In contrast, the only measured effect of R671C in β myosin was a larger step size. Our measurements of step size and bound times predicted velocities consistent with those measured in an in vitro motility assay. Finally, molecular dynamics simulations predicted that the arginine to cysteine mutation in embryonic,more » but not β, myosin may reduce pre-powerstroke lever arm priming and ADP pocket opening, providing a possible structural mechanism consistent with the experimental observations. This paper presents direct comparisons of homologous mutations in several different myosin isoforms, whose divergent functional effects are a testament to myosin’s highly allosteric nature.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [4]; ORCiD logo [4]; ORCiD logo [4];  [5]; ORCiD logo [5]; ORCiD logo [6]
  1. Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA 94550
  2. BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, Kainomyx, Inc., Palo Alto, CA 94304
  3. Department of Biochemistry and Biophysics, Washington University in St. Louis, St. Louis, MO 63110, Medical Scientist Training Program, Washington University in St. Louis, St. Louis, MO 63110
  4. Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
  5. Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, Kainomyx, Inc., Palo Alto, CA 94304
  6. BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
2309805
Grant/Contract Number:  
postdoc career fund
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America Journal Volume: 121 Journal Issue: 9; Journal ID: ISSN 0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Country of Publication:
United States
Language:
English

Citation Formats

Liu, Chao, Karabina, Anastasia, Meller, Artur, Bhattacharjee, Ayan, Agostino, Colby J., Bowman, Greg R., Ruppel, Kathleen M., Spudich, James A., and Leinwand, Leslie A. Homologous mutations in human β, embryonic, and perinatal muscle myosins have divergent effects on molecular power generation. United States: N. p., 2024. Web. doi:10.1073/pnas.2315472121.
Liu, Chao, Karabina, Anastasia, Meller, Artur, Bhattacharjee, Ayan, Agostino, Colby J., Bowman, Greg R., Ruppel, Kathleen M., Spudich, James A., & Leinwand, Leslie A. Homologous mutations in human β, embryonic, and perinatal muscle myosins have divergent effects on molecular power generation. United States. https://doi.org/10.1073/pnas.2315472121
Liu, Chao, Karabina, Anastasia, Meller, Artur, Bhattacharjee, Ayan, Agostino, Colby J., Bowman, Greg R., Ruppel, Kathleen M., Spudich, James A., and Leinwand, Leslie A. Tue . "Homologous mutations in human β, embryonic, and perinatal muscle myosins have divergent effects on molecular power generation". United States. https://doi.org/10.1073/pnas.2315472121.
@article{osti_2309805,
title = {Homologous mutations in human β, embryonic, and perinatal muscle myosins have divergent effects on molecular power generation},
author = {Liu, Chao and Karabina, Anastasia and Meller, Artur and Bhattacharjee, Ayan and Agostino, Colby J. and Bowman, Greg R. and Ruppel, Kathleen M. and Spudich, James A. and Leinwand, Leslie A.},
abstractNote = {Mutations at a highly conserved homologous residue in three closely related muscle myosins cause three distinct diseases involving muscle defects: R671C in β-cardiac myosin causes hypertrophic cardiomyopathy, R672C and R672H in embryonic skeletal myosin cause Freeman–Sheldon syndrome, and R674Q in perinatal skeletal myosin causes trismus-pseudocamptodactyly syndrome. It is not known whether their effects at the molecular level are similar to one another or correlate with disease phenotype and severity. To this end, we investigated the effects of the homologous mutations on key factors of molecular power production using recombinantly expressed human β, embryonic, and perinatal myosin subfragment-1. We found large effects in the developmental myosins but minimal effects in β myosin, and magnitude of changes correlated partially with clinical severity. The mutations in the developmental myosins dramatically decreased the step size and load-sensitive actin-detachment rate of single molecules measured by optical tweezers, in addition to decreasing overall enzymatic (ATPase) cycle rate. In contrast, the only measured effect of R671C in β myosin was a larger step size. Our measurements of step size and bound times predicted velocities consistent with those measured in an in vitro motility assay. Finally, molecular dynamics simulations predicted that the arginine to cysteine mutation in embryonic, but not β, myosin may reduce pre-powerstroke lever arm priming and ADP pocket opening, providing a possible structural mechanism consistent with the experimental observations. This paper presents direct comparisons of homologous mutations in several different myosin isoforms, whose divergent functional effects are a testament to myosin’s highly allosteric nature.},
doi = {10.1073/pnas.2315472121},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 9,
volume = 121,
place = {United States},
year = {Tue Feb 20 00:00:00 EST 2024},
month = {Tue Feb 20 00:00:00 EST 2024}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1073/pnas.2315472121

Save / Share:

Works referenced in this record:

Fluorescent actin filaments move on myosin fixed to a glass surface.
journal, September 1986

  • Kron, S. J.; Spudich, J. A.
  • Proceedings of the National Academy of Sciences, Vol. 83, Issue 17
  • DOI: 10.1073/pnas.83.17.6272

Contractility and kinetics of human fetal and human adult skeletal muscle
journal, June 2013


Structural basis for drug-induced allosteric changes to human β-cardiac myosin motor activity
journal, August 2015

  • Winkelmann, Donald A.; Forgacs, Eva; Miller, Matthew T.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8974

Transgenic Mouse α- and β-Cardiac Myosins Containing the R403Q Mutation Show Isoform-dependent Transient Kinetic Differences
journal, May 2013

  • Lowey, Susan; Bretton, Vera; Gulick, James
  • Journal of Biological Chemistry, Vol. 288, Issue 21
  • DOI: 10.1074/jbc.M113.450668

Harmonic force spectroscopy measures load-dependent kinetics of individual human β-cardiac myosin molecules
journal, August 2015

  • Sung, Jongmin; Nag, Suman; Mortensen, Kim I.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8931

Myosin cleft closure determines the energetics of the actomyosin interaction
journal, September 2010

  • Takács, Balázs; O'Neall‐Hennessey, Elizabeth; Hetényi, Csaba
  • The FASEB Journal, Vol. 25, Issue 1
  • DOI: 10.1096/fj.10-164871

Positive cardiac inotrope omecamtiv mecarbil activates muscle despite suppressing the myosin working stroke
journal, September 2018


ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle.
journal, February 1985

  • Siemankowski, R. F.; Wiseman, M. O.; White, H. D.
  • Proceedings of the National Academy of Sciences, Vol. 82, Issue 3
  • DOI: 10.1073/pnas.82.3.658

How to Measure Load-Dependent Kinetics of Individual Motor Molecules Without a Force-Clamp
book, October 2016


Myosin with hypertrophic cardiac mutation R712L has a decreased working stroke which is rescued by omecamtiv mecarbil
journal, February 2021

  • Snoberger, Aaron; Barua, Bipasha; Atherton, Jennifer L.
  • eLife, Vol. 10
  • DOI: 10.7554/eLife.63691

Ensemble Force Changes that Result from Human Cardiac Myosin Mutations and a Small-Molecule Effector
journal, May 2015


Myosin step size
journal, August 1990


Sudden Deaths in Young Competitive Athletes
journal, March 2009


Mutations in embryonic myosin heavy chain (MYH3) cause Freeman-Sheldon syndrome and Sheldon-Hall syndrome
journal, April 2006

  • Toydemir, Reha M.; Rutherford, Ann; Whitby, Frank G.
  • Nature Genetics, Vol. 38, Issue 5
  • DOI: 10.1038/ng1775

Developmental myosins: expression patterns and functional significance
journal, July 2015


Clinical Characteristics and Natural History of Freeman-Sheldon Syndrome
journal, March 2006

  • Stevenson, David A.; Carey, John C.; Palumbos, Janice
  • Pediatrics, Vol. 117, Issue 3
  • DOI: 10.1542/peds.2005-1219

Kinetics of the interaction between actin, ADP, and cardiac myosin-S1.
journal, April 1984


Molecular consequences of the R453C hypertrophic cardiomyopathy mutation on human  -cardiac myosin motor function
journal, June 2013

  • Sommese, R. F.; Sung, J.; Nag, S.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 31
  • DOI: 10.1073/pnas.1309493110

A mixed-kinetic model describes unloaded velocities of smooth, skeletal, and cardiac muscle myosin filaments in vitro
journal, December 2017

  • Brizendine, Richard K.; Sheehy, Gabriel G.; Alcala, Diego B.
  • Science Advances, Vol. 3, Issue 12
  • DOI: 10.1126/sciadv.aao2267

Comparison of simple potential functions for simulating liquid water
journal, July 1983

  • Jorgensen, William L.; Chandrasekhar, Jayaraman; Madura, Jeffry D.
  • The Journal of Chemical Physics, Vol. 79, Issue 2
  • DOI: 10.1063/1.445869

Genotype‐phenotype relationships in Freeman–Sheldon syndrome
journal, September 2014

  • Beck, Anita E.; McMillin, Margaret J.; Gildersleeve, Heidi I. S.
  • American Journal of Medical Genetics Part A, Vol. 164, Issue 11
  • DOI: 10.1002/ajmg.a.36762

What Limits the Velocity of Fast-skeletal Muscle Contraction in Mammals?
journal, January 2006

  • Nyitrai, Miklós; Rossi, Rosetta; Adamek, Nancy
  • Journal of Molecular Biology, Vol. 355, Issue 3
  • DOI: 10.1016/j.jmb.2005.10.063

Inherent Force-Dependent Properties of β -Cardiac Myosin Contribute to the Force-Velocity Relationship of Cardiac Muscle
journal, December 2014

  • Greenberg, Michael J.; Shuman, Henry; Ostap, E. Michael
  • Biophysical Journal, Vol. 107, Issue 12
  • DOI: 10.1016/j.bpj.2014.11.005

Myosin Heavy Chains IIa and IId Are Functionally Distinct in the Mouse
journal, May 1998

  • Sartorius, Carol A.; Lu, Brian D.; Acakpo-Satchivi, Leslie
  • The Journal of Cell Biology, Vol. 141, Issue 4
  • DOI: 10.1083/jcb.141.4.943

Reductions in ATPase activity, actin sliding velocity, and myofibril stability yield muscle dysfunction in Drosophila models of myosin-based Freeman–Sheldon syndrome
journal, January 2019

  • Rao, Deepti S.; Kronert, William A.; Guo, Yiming
  • Molecular Biology of the Cell, Vol. 30, Issue 1
  • DOI: 10.1091/mbc.E18-08-0526

GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
journal, September 2015


The ATPase cycle of human muscle myosin II isoforms: Adaptation of a single mechanochemical cycle for different physiological roles
journal, September 2019

  • Johnson, Chloe A.; Walklate, Jonathan; Svicevic, Marina
  • Journal of Biological Chemistry, Vol. 294, Issue 39
  • DOI: 10.1074/jbc.RA119.009825

Myosin heavy chain mutations that cause Freeman-Sheldon syndrome lead to muscle structural and functional defects in Drosophila
journal, May 2019


Early-Onset Hypertrophic Cardiomyopathy Mutations Significantly Increase the Velocity, Force, and Actin-Activated ATPase Activity of Human β-Cardiac Myosin
journal, December 2016


Contractility parameters of human β-cardiac myosin with the hypertrophic cardiomyopathy mutation R403Q show loss of motor function
journal, October 2015

  • Nag, Suman; Sommese, Ruth F.; Ujfalusi, Zoltan
  • Science Advances, Vol. 1, Issue 9
  • DOI: 10.1126/sciadv.1500511

Single molecule mechanics resolves the earliest events in force generation by cardiac myosin
journal, September 2019

  • Woody, Michael S.; Winkelmann, Donald A.; Capitanio, Marco
  • eLife, Vol. 8
  • DOI: 10.7554/eLife.49266

Unc45b Forms a Cytosolic Complex with Hsp90 and Targets the Unfolded Myosin Motor Domain
journal, May 2008


The motor protein myosin-I produces its working stroke in two steps
journal, April 1999

  • Veigel, Claudia; Coluccio, Lynne M.; Jontes, James D.
  • Nature, Vol. 398, Issue 6727
  • DOI: 10.1038/19104

Hereditary myosin myopathies
journal, May 2007


Mutation of Perinatal Myosin Heavy Chain Associated with a Carney Complex Variant
journal, July 2004

  • Veugelers, Mark; Bressan, Michael; McDermott, Deborah A.
  • New England Journal of Medicine, Vol. 351, Issue 5
  • DOI: 10.1056/NEJMoa040584

Dilated cardiomyopathy mutation in the converter domain of human cardiac myosin alters motor activity and response to omecamtiv mecarbil
journal, November 2019

  • Tang, Wanjian; Unrath, William C.; Desetty, Rohini
  • Journal of Biological Chemistry, Vol. 294, Issue 46
  • DOI: 10.1074/jbc.RA119.010217

CHARMM36m: an improved force field for folded and intrinsically disordered proteins
journal, November 2016

  • Huang, Jing; Rauscher, Sarah; Nawrocki, Grzegorz
  • Nature Methods, Vol. 14, Issue 1
  • DOI: 10.1038/nmeth.4067

Postnatal Myosin Heavy Chain Isoform Expression in Normal Mice and Mice Null for IIb or IId Myosin Heavy Chains
journal, January 2001


2-Deoxy-ATP Enhances Contractility of Rat Cardiac Muscle
journal, June 2000


Hypertrophic cardiomyopathy
journal, January 2013


MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories
journal, October 2015

  • McGibbon, Robert T.; Beauchamp, Kyle A.; Harrigan, Matthew P.
  • Biophysical Journal, Vol. 109, Issue 8
  • DOI: 10.1016/j.bpj.2015.08.015

Myosinopathies: pathology and mechanisms
journal, August 2012


Growth and Muscle Defects in Mice Lacking Adult Myosin Heavy Chain Genes
journal, December 1997

  • Acakpo-Satchivi, Leslie J. R.; Edelmann, Winfried; Sartorius, Carol
  • The Journal of Cell Biology, Vol. 139, Issue 5
  • DOI: 10.1083/jcb.139.5.1219

Identification of functional differences between recombinant human α and β cardiac myosin motors
journal, February 2012

  • Deacon, John C.; Bloemink, Marieke J.; Rezavandi, Heresh
  • Cellular and Molecular Life Sciences, Vol. 69, Issue 13
  • DOI: 10.1007/s00018-012-0927-3

Structural and Functional Insights into the Myosin Motor Mechanism
journal, April 2010


Mutations in the motor domain modulate myosin activity and myofibril organization
journal, October 2003

  • Wang, Qun; Moncman, Carole L.; Winkelmann, Donald A.
  • Journal of Cell Science, Vol. 116, Issue 20
  • DOI: 10.1242/jcs.00709

Arthrogryposis: A Review and Update
journal, July 2009

  • Bamshad, Michael; Van Heest, Ann E.; Pleasure, David
  • Journal of Bone and Joint Surgery, Vol. 91, Issue Supplement_4
  • DOI: 10.2106/JBJS.I.00281

Comparative Protein Modelling by Satisfaction of Spatial Restraints
journal, December 1993


The hypertrophic cardiomyopathy mutations R403Q and R663H increase the number of myosin heads available to interact with actin
journal, April 2020

  • Sarkar, Saswata S.; Trivedi, Darshan V.; Morck, Makenna M.
  • Science Advances, Vol. 6, Issue 14
  • DOI: 10.1126/sciadv.aax0069

Mechanism of Blebbistatin Inhibition of Myosin II
journal, June 2004

  • Kovács, Mihály; Tóth, Judit; Hetényi, Csaba
  • Journal of Biological Chemistry, Vol. 279, Issue 34
  • DOI: 10.1074/jbc.M405319200

Canonical sampling through velocity rescaling
journal, January 2007

  • Bussi, Giovanni; Donadio, Davide; Parrinello, Michele
  • The Journal of Chemical Physics, Vol. 126, Issue 1
  • DOI: 10.1063/1.2408420

New Perspectives on the Prevalence of Hypertrophic Cardiomyopathy
journal, March 2015

  • Semsarian, Christopher; Ingles, Jodie; Maron, Martin S.
  • Journal of the American College of Cardiology, Vol. 65, Issue 12
  • DOI: 10.1016/j.jacc.2015.01.019

Functional divergence of the sarcomeric myosin, MYH7b, supports species-specific biological roles
journal, January 2023

  • Lee, Lindsey A.; Barrick, Samantha K.; Meller, Artur
  • Journal of Biological Chemistry, Vol. 299, Issue 1
  • DOI: 10.1016/j.jbc.2022.102657

Functional Effects of the Hypertrophic Cardiomyopathy R403Q Mutation Are Different in an α- or β-Myosin Heavy Chain Backbone
journal, July 2008

  • Lowey, Susan; Lesko, Leanne M.; Rovner, Arthur S.
  • Journal of Biological Chemistry, Vol. 283, Issue 29
  • DOI: 10.1074/jbc.M800554200

Cardiac Myosin Activation with Omecamtiv Mecarbil in Systolic Heart Failure
journal, January 2021

  • Teerlink, John R.; Diaz, Rafael; Felker, G. Michael
  • New England Journal of Medicine, Vol. 384, Issue 2
  • DOI: 10.1056/NEJMoa2025797

Molecular dynamics with coupling to an external bath
journal, October 1984

  • Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.
  • The Journal of Chemical Physics, Vol. 81, Issue 8
  • DOI: 10.1063/1.448118

The embryonic myosin R672C mutation that underlies Freeman-Sheldon syndrome impairs cross-bridge detachment and cycling in adult skeletal muscle
journal, March 2015

  • Racca, A. W.; Beck, A. E.; McMillin, M. J.
  • Human Molecular Genetics, Vol. 24, Issue 12
  • DOI: 10.1093/hmg/ddv084

Mavacamten stabilizes an autoinhibited state of two-headed cardiac myosin
journal, July 2018

  • Rohde, John A.; Roopnarine, Osha; Thomas, David D.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 32
  • DOI: 10.1073/pnas.1720342115

Mechanical Coupling between Myosin Molecules Causes Differences between Ensemble and Single-Molecule Measurements
journal, August 2012


Controlling load-dependent kinetics of β-cardiac myosin at the single-molecule level
journal, June 2018

  • Liu, Chao; Kawana, Masataka; Song, Dan
  • Nature Structural & Molecular Biology, Vol. 25, Issue 6
  • DOI: 10.1038/s41594-018-0069-x

Hypertrophic cardiomyopathy β-cardiac myosin mutation (P710R) leads to hypercontractility by disrupting super relaxed state
journal, June 2021

  • Vander Roest, Alison Schroer; Liu, Chao; Morck, Makenna M.
  • Proceedings of the National Academy of Sciences, Vol. 118, Issue 24
  • DOI: 10.1073/pnas.2025030118

A Peptide Tag System for Facile Purification and Single-Molecule Immobilization
journal, November 2009

  • Huang, Jin; Nagy, Stanislav S.; Koide, Akiko
  • Biochemistry, Vol. 48, Issue 50
  • DOI: 10.1021/bi901756n

Conformational distributions of isolated myosin motor domains encode their mechanochemical properties
journal, May 2020

  • Porter, Justin R.; Meller, Artur; Zimmerman, Maxwell I.
  • eLife, Vol. 9
  • DOI: 10.7554/eLife.55132

Polymorphic transitions in single crystals: A new molecular dynamics method
journal, December 1981

  • Parrinello, M.; Rahman, A.
  • Journal of Applied Physics, Vol. 52, Issue 12
  • DOI: 10.1063/1.328693

Biophysical properties of human β-cardiac myosin with converter mutations that cause hypertrophic cardiomyopathy
journal, February 2017

  • Kawana, Masataka; Sarkar, Saswata S.; Sutton, Shirley
  • Science Advances, Vol. 3, Issue 2
  • DOI: 10.1126/sciadv.1601959

Chapter 6 Kinetic and Equilibrium Analysis of the Myosin ATPase
book, March 2009


Whole‑exome sequencing reveals MYH7 p.R671C mutation in three different phenotypes of familial hypertrophic cardiomyopathy
journal, July 2021

  • Yu, Wei; Huang, Mi-Mi; Zhang, Guo-Hong
  • Experimental and Therapeutic Medicine, Vol. 22, Issue 3
  • DOI: 10.3892/etm.2021.10434

Freeman-Burian syndrome
journal, January 2019

  • Poling, Mikaela I.; Dufresne, Craig R.; Chamberlain, Robert L.
  • Orphanet Journal of Rare Diseases, Vol. 14, Issue 1
  • DOI: 10.1186/s13023-018-0984-2

Phenotypic variation in trismus-pseudocamptodactyly syndrome caused by a recurrent MYH8 mutation
journal, January 2008


Deciphering the super relaxed state of human β-cardiac myosin and the mode of action of mavacamten from myosin molecules to muscle fibers
journal, August 2018

  • Anderson, Robert L.; Trivedi, Darshan V.; Sarkar, Saswata S.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 35
  • DOI: 10.1073/pnas.1809540115

Trismus‐pseudocamptodactyly syndrome is caused by recurrent mutation of MYH8
journal, October 2006

  • Toydemir, Reha M.; Chen, Harold; Proud, Virginia K.
  • American Journal of Medical Genetics Part A, Vol. 140A, Issue 22
  • DOI: 10.1002/ajmg.a.31495

Modeling the Actin.myosin ATPase Cross-Bridge Cycle for Skeletal and Cardiac Muscle Myosin Isoforms
journal, March 2017

  • Mijailovich, Srbolujub M.; Nedic, Djordje; Svicevic, Marina
  • Biophysical Journal, Vol. 112, Issue 5
  • DOI: 10.1016/j.bpj.2017.01.021

Hypertrophic cardiomyopathy: Mutations to mechanisms to therapies
journal, September 2022


Motility Assay to Probe the Calcium Sensitivity of Myosin and Regulated Thin Filaments
book, December 2023


The myosin mesa and the basis of hypercontractility caused by hypertrophic cardiomyopathy mutations
journal, May 2017

  • Nag, Suman; Trivedi, Darshan V.; Sarkar, Saswata S.
  • Nature Structural & Molecular Biology, Vol. 24, Issue 6
  • DOI: 10.1038/nsmb.3408

Pi Release from Myosin: A Simulation Analysis of Possible Pathways
journal, March 2010


Modelling proteins’ hidden conformations to predict antibiotic resistance
journal, October 2016

  • Hart, Kathryn M.; Ho, Chris M. W.; Dutta, Supratik
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12965

Prolonged myosin binding increases muscle stiffness in Drosophila models of Freeman-Sheldon syndrome
journal, March 2021


Deep learning the structural determinants of protein biochemical properties by comparing structural ensembles with DiffNets
journal, May 2021


Drug specificity and affinity are encoded in the probability of cryptic pocket opening in myosin motor domains
journal, January 2023

  • Meller, Artur; Lotthammer, Jeffrey M.; Smith, Louis G.
  • eLife, Vol. 12
  • DOI: 10.7554/eLife.83602

Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers
journal, October 2003

  • Veigel, Claudia; Molloy, Justin E.; Schmitz, Stephan
  • Nature Cell Biology, Vol. 5, Issue 11
  • DOI: 10.1038/ncb1060

The Mammalian Myosin Heavy Chain gene Family
journal, November 1996


Magnesium Ion–Water Coordination and Exchange in Biomolecular Simulations
journal, March 2012

  • Allnér, Olof; Nilsson, Lennart; Villa, Alessandra
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 4
  • DOI: 10.1021/ct3000734

Functional diversity among a family of human skeletal muscle myosin motors
journal, December 2009

  • Resnicow, Daniel I.; Deacon, John C.; Warrick, Hans M.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 3
  • DOI: 10.1073/pnas.0913527107

The Most Prevalent Freeman-Sheldon Syndrome Mutations in the Embryonic Myosin Motor Share Functional Defects
journal, March 2016

  • Walklate, Jonathan; Vera, Carlos; Bloemink, Marieke J.
  • Journal of Biological Chemistry, Vol. 291, Issue 19
  • DOI: 10.1074/jbc.M115.707489