DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on Sat Feb 08 00:00:00 EST 2025

Title: Directing CO2 electroreduction pathways for selective C2 product formation using single-site doped copper catalysts

Abstract

Manipulating the selectivity-determining step in post-C–C coupling is crucial for enhancing C2 product specificity during electrocatalytic CO2 reduction, complementing efforts to boost rate-determining step kinetics. Here we highlight the role of single-site noble metal dopants on Cu surfaces in influencing C–O bond dissociation in an oxygen-bound selectivity-determining intermediate, steering post-C–C coupling toward ethylene versus ethanol. Integrating theoretical and experimental analyses, we demonstrate that the oxygen binding strength of the Cu surface controls the favorability of C–O bond scission, thus tuning the selectivity ratio of ethylene-to-ethanol. The Rh-doped Cu catalyst with optimal oxygen binding energy achieves a Faradaic efficiency toward ethylene of 61.2% and an ethylene-to-ethanol Faradaic efficiency ratio of 4.51 at –0.66 V versus RHE (reversible hydrogen electrode). Integrating control of both rate-determining and selectivity-determining steps further raises ethylene Faradaic efficiency to 68.8% at 1.47 A cm-2 in a tandem electrode. Our insights guide the rational design of Cu-based catalysts for selective CO2 electroreduction to a single C2 product.

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [1]; ORCiD logo [4];  [5];  [6];  [1];  [1];  [1];  [1]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3];  [1]; ORCiD logo [7];  [5]; ORCiD logo [8]; ORCiD logo [2]; ORCiD logo [1]
  1. University of Cincinnati, OH (United States)
  2. Rice University, Houston, TX (United States)
  3. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
  4. Stony Brook University, NY (United States)
  5. Brookhaven National Laboratory (BNL), Upton, NY (United States)
  6. Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source (NSLS)
  7. Stony Brook University, NY (United States); Brookhaven National Laboratory (BNL), Upton, NY (United States)
  8. Arizona State University, Tempe, AZ (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); National Science Foundation (NSF)
OSTI Identifier:
2301665
Grant/Contract Number:  
AC05-00OR22725; SC0012704; SC0012335; EE0010836; CBET-2033343; CBET-2143941; ECCS-1542160; CHE 2102299
Resource Type:
Accepted Manuscript
Journal Name:
Nature Chemical Engineering
Additional Journal Information:
Journal Volume: 1; Journal Issue: 2; Journal ID: ISSN 2948-1198
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; carbon capture and storage; chemical engineering; electrocatalysis

Citation Formats

Li, Zhengyuan, Wang, Peng, Lyu, Xiang, Kondapalli, Vamsi Reddy, Xiang, Shuting, Jimenez, Juan D., Ma, Lu, Ito, Takeshi, Zhang, Tianyu, Raj, Jithu, Fang, Yanbo, Bai, Yaocai, Li, Jianlin, Serov, Alexey, Shanov, Vesselin, Frenkel, Anatoly I., Senanayake, Sanjaya D., Yang, Shize, Senftle, Thomas P., and Wu, Jingjie. Directing CO2 electroreduction pathways for selective C2 product formation using single-site doped copper catalysts. United States: N. p., 2024. Web. doi:10.1038/s44286-023-00018-w.
Li, Zhengyuan, Wang, Peng, Lyu, Xiang, Kondapalli, Vamsi Reddy, Xiang, Shuting, Jimenez, Juan D., Ma, Lu, Ito, Takeshi, Zhang, Tianyu, Raj, Jithu, Fang, Yanbo, Bai, Yaocai, Li, Jianlin, Serov, Alexey, Shanov, Vesselin, Frenkel, Anatoly I., Senanayake, Sanjaya D., Yang, Shize, Senftle, Thomas P., & Wu, Jingjie. Directing CO2 electroreduction pathways for selective C2 product formation using single-site doped copper catalysts. United States. https://doi.org/10.1038/s44286-023-00018-w
Li, Zhengyuan, Wang, Peng, Lyu, Xiang, Kondapalli, Vamsi Reddy, Xiang, Shuting, Jimenez, Juan D., Ma, Lu, Ito, Takeshi, Zhang, Tianyu, Raj, Jithu, Fang, Yanbo, Bai, Yaocai, Li, Jianlin, Serov, Alexey, Shanov, Vesselin, Frenkel, Anatoly I., Senanayake, Sanjaya D., Yang, Shize, Senftle, Thomas P., and Wu, Jingjie. Thu . "Directing CO2 electroreduction pathways for selective C2 product formation using single-site doped copper catalysts". United States. https://doi.org/10.1038/s44286-023-00018-w.
@article{osti_2301665,
title = {Directing CO2 electroreduction pathways for selective C2 product formation using single-site doped copper catalysts},
author = {Li, Zhengyuan and Wang, Peng and Lyu, Xiang and Kondapalli, Vamsi Reddy and Xiang, Shuting and Jimenez, Juan D. and Ma, Lu and Ito, Takeshi and Zhang, Tianyu and Raj, Jithu and Fang, Yanbo and Bai, Yaocai and Li, Jianlin and Serov, Alexey and Shanov, Vesselin and Frenkel, Anatoly I. and Senanayake, Sanjaya D. and Yang, Shize and Senftle, Thomas P. and Wu, Jingjie},
abstractNote = {Manipulating the selectivity-determining step in post-C–C coupling is crucial for enhancing C2 product specificity during electrocatalytic CO2 reduction, complementing efforts to boost rate-determining step kinetics. Here we highlight the role of single-site noble metal dopants on Cu surfaces in influencing C–O bond dissociation in an oxygen-bound selectivity-determining intermediate, steering post-C–C coupling toward ethylene versus ethanol. Integrating theoretical and experimental analyses, we demonstrate that the oxygen binding strength of the Cu surface controls the favorability of C–O bond scission, thus tuning the selectivity ratio of ethylene-to-ethanol. The Rh-doped Cu catalyst with optimal oxygen binding energy achieves a Faradaic efficiency toward ethylene of 61.2% and an ethylene-to-ethanol Faradaic efficiency ratio of 4.51 at –0.66 V versus RHE (reversible hydrogen electrode). Integrating control of both rate-determining and selectivity-determining steps further raises ethylene Faradaic efficiency to 68.8% at 1.47 A cm-2 in a tandem electrode. Our insights guide the rational design of Cu-based catalysts for selective CO2 electroreduction to a single C2 product.},
doi = {10.1038/s44286-023-00018-w},
journal = {Nature Chemical Engineering},
number = 2,
volume = 1,
place = {United States},
year = {Thu Feb 08 00:00:00 EST 2024},
month = {Thu Feb 08 00:00:00 EST 2024}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on February 8, 2025
Publisher's Version of Record

Save / Share:

Works referenced in this record:

2022 roadmap on low temperature electrochemical CO2 reduction
journal, October 2022

  • Stephens, Ifan E. L.; Chan, Karen; Bagger, Alexander
  • Journal of Physics: Energy, Vol. 4, Issue 4
  • DOI: 10.1088/2515-7655/ac7823

Progress and Perspectives of Electrochemical CO 2 Reduction on Copper in Aqueous Electrolyte
journal, April 2019


Boosting CO2 electroreduction towards C2+ products via CO* intermediate manipulation on copper-based catalysts
journal, January 2022

  • Xiang, Kaisong; Shen, Fenghua; Fu, Yingxue
  • Environmental Science: Nano, Vol. 9, Issue 3
  • DOI: 10.1039/D1EN00977J

Product Selectivity Affected by Cationic Species in Electrochemical Reduction of CO 2 and CO at a Cu Electrode
journal, January 1991

  • Murata, Akira; Hori, Yoshio
  • Bulletin of the Chemical Society of Japan, Vol. 64, Issue 1
  • DOI: 10.1246/bcsj.64.123

Product Distribution Control Guided by a Microkinetic Analysis for CO Reduction at High-Flux Electrocatalysis Using Gas-Diffusion Cu Electrodes
journal, January 2023


Atomistic Mechanisms Underlying Selectivities in C 1 and C 2 Products from Electrochemical Reduction of CO on Cu(111)
journal, December 2016

  • Xiao, Hai; Cheng, Tao; Goddard, William A.
  • Journal of the American Chemical Society, Vol. 139, Issue 1
  • DOI: 10.1021/jacs.6b06846

Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K
journal, February 2017

  • Cheng, Tao; Xiao, Hai; Goddard, William A.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 8
  • DOI: 10.1073/pnas.1612106114

Facet Dependence of CO 2 Reduction Paths on Cu Electrodes
journal, December 2015


Theoretical Considerations on the Electroreduction of CO to C 2 Species on Cu(100) Electrodes
journal, June 2013

  • Calle-Vallejo, Federico; Koper, Marc T. M.
  • Angewandte Chemie International Edition, Vol. 52, Issue 28
  • DOI: 10.1002/anie.201301470

AuCu Alloy Nanoparticle Embedded Cu Submicrocone Arrays for Selective Conversion of CO 2 to Ethanol
journal, June 2019


Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction
journal, November 2019


Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols
journal, June 2018


Efficient Electrocatalytic CO2 Reduction to C2+ Alcohols at Defect-Site-Rich Cu Surface
journal, February 2021


Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation
journal, May 2020


Binding Site Diversity Promotes CO 2 Electroreduction to Ethanol
journal, May 2019

  • Li, Yuguang C.; Wang, Ziyun; Yuan, Tiange
  • Journal of the American Chemical Society, Vol. 141, Issue 21
  • DOI: 10.1021/jacs.9b02945

Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces
journal, August 2014

  • Kuhl, Kendra P.; Hatsukade, Toru; Cave, Etosha R.
  • Journal of the American Chemical Society, Vol. 136, Issue 40
  • DOI: 10.1021/ja505791r

Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes
journal, June 2017


An In Situ Surface-Enhanced Infrared Absorption Spectroscopy Study of Electrochemical CO 2 Reduction: Selectivity Dependence on Surface C-Bound and O-Bound Reaction Intermediates
journal, December 2018

  • Katayama, Yu; Nattino, Francesco; Giordano, Livia
  • The Journal of Physical Chemistry C, Vol. 123, Issue 10
  • DOI: 10.1021/acs.jpcc.8b09598

Directing the selectivity of CO 2 electroreduction to target C 2 products via non-metal doping on Cu surfaces
journal, January 2021

  • Zhi, Xing; Jiao, Yan; Zheng, Yao
  • Journal of Materials Chemistry A, Vol. 9, Issue 10
  • DOI: 10.1039/D0TA11604A

Role of oxygen-bound reaction intermediates in selective electrochemical CO2 reduction
journal, January 2021

  • Zhi, Xing; Vasileff, Anthony; Zheng, Yao
  • Energy & Environmental Science, Vol. 14, Issue 7
  • DOI: 10.1039/D1EE00740H

Selectivity Map for the Late Stages of CO and CO 2 Reduction to C 2 Species on Copper Electrodes
journal, April 2021

  • Piqué, Oriol; Low, Qi Hang; Handoko, Albertus D.
  • Angewandte Chemie International Edition, Vol. 60, Issue 19
  • DOI: 10.1002/anie.202014060

Structure Sensitivity of the Electrochemical Reduction of Carbon Monoxide on Copper Single Crystals
journal, April 2013

  • Schouten, Klaas Jan P.; Pérez Gallent, Elena; Koper, Marc T. M.
  • ACS Catalysis, Vol. 3, Issue 6
  • DOI: 10.1021/cs4002404

Elucidating the Structure of Ethanol-Producing Active Sites at Oxide-Derived Cu Electrocatalysts
journal, August 2020


Combining theory and experiment in electrocatalysis: Insights into materials design
journal, January 2017


Reduction-Controlled Atomic Migration for Single Atom Alloy Library
journal, May 2022


XPS Study of Nanostructured Rhodium Oxide Film Comprising Rh 4+ Species
journal, August 2016

  • Kibis, Lidiya S.; Stadnichenko, Andrey I.; Koscheev, Sergey V.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 34
  • DOI: 10.1021/acs.jpcc.6b05219

Stability of Residual Oxides in Oxide-Derived Copper Catalysts for Electrochemical CO 2 Reduction Investigated with 18 O Labeling
journal, December 2017

  • Lum, Yanwei; Ager, Joel W.
  • Angewandte Chemie International Edition, Vol. 57, Issue 2
  • DOI: 10.1002/anie.201710590

Efficient Electrochemical Nitrate Reduction to Ammonia with Copper‐Supported Rhodium Cluster and Single‐Atom Catalysts
journal, April 2022

  • Liu, Huimin; Lang, Xiuyao; Zhu, Chao
  • Angewandte Chemie International Edition, Vol. 61, Issue 23
  • DOI: 10.1002/anie.202202556

Hydrodynamics Change Tafel Slopes in Electrochemical CO2 Reduction on Copper
journal, April 2023


Kinetic Understanding of Catalytic Selectivity and Product Distribution of Electrochemical Carbon Dioxide Reduction Reaction
journal, March 2023


Electrochemical Reduction of CO 2 Using Copper Single-Crystal Surfaces: Effects of CO* Coverage on the Selective Formation of Ethylene
journal, February 2017


Planar defect-driven electrocatalysis of CO2-to-C2H4 conversion
journal, January 2021

  • Li, Zhengyuan; Fang, Yanbo; Zhang, Jianfang
  • Journal of Materials Chemistry A, Vol. 9, Issue 35
  • DOI: 10.1039/D1TA02565A

Lateral Adsorbate Interactions Inhibit HCOO while Promoting CO Selectivity for CO 2 Electrocatalysis on Silver
journal, January 2019

  • Bohra, Divya; Ledezma‐Yanez, Isis; Li, Guanna
  • Angewandte Chemie International Edition, Vol. 58, Issue 5
  • DOI: 10.1002/anie.201811667

Probing the Reaction Mechanism of CO 2 Electroreduction over Ag Films via Operando Infrared Spectroscopy
journal, December 2016


In Situ Surface-Enhanced Raman Spectroscopic Evidence on the Origin of Selectivity in CO2 Electrocatalytic Reduction
journal, August 2020


Identification of Possible Pathways for C–C Bond Formation during Electrochemical Reduction of CO 2 : New Theoretical Insights from an Improved Electrochemical Model
journal, April 2016

  • Goodpaster, Jason D.; Bell, Alexis T.; Head-Gordon, Martin
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 8
  • DOI: 10.1021/acs.jpclett.6b00358

Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels
journal, September 2019

  • Birdja, Yuvraj Y.; Pérez-Gallent, Elena; Figueiredo, Marta C.
  • Nature Energy, Vol. 4, Issue 9
  • DOI: 10.1038/s41560-019-0450-y

A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes
journal, January 2011

  • Schouten, K. J. P.; Kwon, Y.; van der Ham, C. J. M.
  • Chemical Science, Vol. 2, Issue 10
  • DOI: 10.1039/c1sc00277e

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Projector augmented-wave method
journal, December 1994


High-precision sampling for Brillouin-zone integration in metals
journal, August 1989


Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000

  • Henkelman, Graeme; Uberuaga, Blas P.; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
journal, December 2000

  • Henkelman, Graeme; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22
  • DOI: 10.1063/1.1323224

Reaction mechanisms of CO2 electrochemical reduction on Cu(111) determined with density functional theory
journal, April 2014


Selectivity of CO 2 Reduction on Copper Electrodes: The Role of the Kinetics of Elementary Steps
journal, January 2013

  • Nie, Xiaowa; Esopi, Monica R.; Janik, Michael J.
  • Angewandte Chemie International Edition, Vol. 52, Issue 9
  • DOI: 10.1002/anie.201208320

First-principles based microkinetic modeling of borohydride oxidation on a Au(111) electrode
journal, November 2011


Density functional theory models for electrocatalytic reactions
book, January 2018


ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Kinetics of the reactions of ethylene oxide with water and ethylene glycols
journal, December 2001

  • Melhem, Georges A.; Gianetto, Arturo; Levin, Marc E.
  • Process Safety Progress, Vol. 20, Issue 4
  • DOI: 10.1002/prs.680200405