DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interfacial Electrochemical Lithiation and Dissolution Mechanisms at a Sulfurized Polyacrylonitrile Cathode Surface

Abstract

Advances in sulfurized-polyacrylonitrile (SPAN)- based cathode materials promise safer and more efficient lithium–sulfur (Li-S) battery performance. To elucidate electrolyte–cathode interfacial electrochemistry and polysulfide (PS) dissolution, we emulate discharge SPAN reactions via ab initio molecular dynamics (AIMD) simulations. Plausible structures and their lithiation profiles are cross-validated via Raman/IR spectroscopy and density functional theory (DFT). Lithium bis(fluorosulfonyl)imide (LiFSI) plays versatile roles in the Li-SPAN cell electrochemistry, primarily as the major source in forming the cathode–electrolyte interphase (CEI), further verified via X-ray photoelectron spectroscopy and AIMD. Besides being a charge carrier and CEI composer, LiFSI mediates the PS generation processes in SPAN electrochemical lithiation. Analysis of AIMD trajectories during progressive lithiation reveals that, compared to carbonates, ether solvents enable stronger solvation and chemical stabilization for both salt and SPAN structures. Differentiated CEI formation and electrochemical lithiation decomposition pathways and products are profoundly associated with the intrinsic nature of lithium bonding with oxygen and sulfur.

Authors:
 [1];  [2];  [3];  [2];  [3];  [4]; ORCiD logo [5]
  1. Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
  2. Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
  3. Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
  4. Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States, Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
  5. Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
Publication Date:
Research Org.:
Texas A & M Univ., College Station, TX (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO); National Science Foundation (NSF)
OSTI Identifier:
2284025
Alternate Identifier(s):
OSTI ID: 2322413
Grant/Contract Number:  
AC05-76RL01830; EE0007764; PNNL-595241; CHE-1338173
Resource Type:
Published Article
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Name: ACS Energy Letters Journal Volume: 9 Journal Issue: 3; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Electrolytes; Lithiation; Solvation; Solvents; Sulfur

Citation Formats

Kuai, Dacheng, Wang, Shen, Perez-Beltran, Saul, Yu, Sicen, Real, Gerard A., Liu, Ping, and Balbuena, Perla B. Interfacial Electrochemical Lithiation and Dissolution Mechanisms at a Sulfurized Polyacrylonitrile Cathode Surface. United States: N. p., 2024. Web. doi:10.1021/acsenergylett.3c02757.
Kuai, Dacheng, Wang, Shen, Perez-Beltran, Saul, Yu, Sicen, Real, Gerard A., Liu, Ping, & Balbuena, Perla B. Interfacial Electrochemical Lithiation and Dissolution Mechanisms at a Sulfurized Polyacrylonitrile Cathode Surface. United States. https://doi.org/10.1021/acsenergylett.3c02757
Kuai, Dacheng, Wang, Shen, Perez-Beltran, Saul, Yu, Sicen, Real, Gerard A., Liu, Ping, and Balbuena, Perla B. Mon . "Interfacial Electrochemical Lithiation and Dissolution Mechanisms at a Sulfurized Polyacrylonitrile Cathode Surface". United States. https://doi.org/10.1021/acsenergylett.3c02757.
@article{osti_2284025,
title = {Interfacial Electrochemical Lithiation and Dissolution Mechanisms at a Sulfurized Polyacrylonitrile Cathode Surface},
author = {Kuai, Dacheng and Wang, Shen and Perez-Beltran, Saul and Yu, Sicen and Real, Gerard A. and Liu, Ping and Balbuena, Perla B.},
abstractNote = {Advances in sulfurized-polyacrylonitrile (SPAN)- based cathode materials promise safer and more efficient lithium–sulfur (Li-S) battery performance. To elucidate electrolyte–cathode interfacial electrochemistry and polysulfide (PS) dissolution, we emulate discharge SPAN reactions via ab initio molecular dynamics (AIMD) simulations. Plausible structures and their lithiation profiles are cross-validated via Raman/IR spectroscopy and density functional theory (DFT). Lithium bis(fluorosulfonyl)imide (LiFSI) plays versatile roles in the Li-SPAN cell electrochemistry, primarily as the major source in forming the cathode–electrolyte interphase (CEI), further verified via X-ray photoelectron spectroscopy and AIMD. Besides being a charge carrier and CEI composer, LiFSI mediates the PS generation processes in SPAN electrochemical lithiation. Analysis of AIMD trajectories during progressive lithiation reveals that, compared to carbonates, ether solvents enable stronger solvation and chemical stabilization for both salt and SPAN structures. Differentiated CEI formation and electrochemical lithiation decomposition pathways and products are profoundly associated with the intrinsic nature of lithium bonding with oxygen and sulfur.},
doi = {10.1021/acsenergylett.3c02757},
journal = {ACS Energy Letters},
number = 3,
volume = 9,
place = {United States},
year = {Mon Feb 05 00:00:00 EST 2024},
month = {Mon Feb 05 00:00:00 EST 2024}
}

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

New Insights into the N–S Bond Formation of a Sulfurized-Polyacrylonitrile Cathode Material for Lithium–Sulfur Batteries
journal, March 2021

  • Huang, Chen-Jui; Lin, Kuan-Yu; Hsieh, Yi-Chen
  • ACS Applied Materials & Interfaces, Vol. 13, Issue 12
  • DOI: 10.1021/acsami.0c22811

Projector augmented-wave method
journal, December 1994


Inorganic Solid Electrolyte Interphase Engineering Rationales Inspired by Hexafluorophosphate Decomposition Mechanisms
journal, January 2023

  • Kuai, Dacheng; Balbuena, Perla B.
  • The Journal of Physical Chemistry C, Vol. 127, Issue 4
  • DOI: 10.1021/acs.jpcc.2c07838

Sulfurized Polyacrylonitrile Cathodes with High Compatibility in Both Ether and Carbonate Electrolytes for Ultrastable Lithium–Sulfur Batteries
journal, July 2019

  • Wang, Xiaofei; Qian, Yumin; Wang, Lina
  • Advanced Functional Materials, Vol. 29, Issue 39
  • DOI: 10.1002/adfm.201902929

Prospect of Sulfurized Pyrolyzed Poly(acrylonitrile) (S@pPAN) Cathode Materials for Rechargeable Lithium Batteries
journal, February 2020

  • Yang, Huijun; Chen, Jiahang; Yang, Jun
  • Angewandte Chemie International Edition, Vol. 59, Issue 19
  • DOI: 10.1002/anie.201913540

Sulfurized Polyacrylonitrile (SPAN): Changes in Mechanical Properties during Electrochemical Lithiation
journal, June 2021

  • Perez Beltran, Saul; Balbuena, Perla B.
  • The Journal of Physical Chemistry C, Vol. 125, Issue 24
  • DOI: 10.1021/acs.jpcc.1c02966

A grid-based Bader analysis algorithm without lattice bias
journal, January 2009


Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions
journal, May 2009

  • Marenich, Aleksandr V.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 18, p. 6378-6396
  • DOI: 10.1021/jp810292n

Accelerated five-component spiro-pyrrolidine construction at the air–liquid interface
journal, January 2021

  • Kuai, Dacheng; Cheng, Heyong; Kuan, Kai-Yuan
  • Chemical Communications, Vol. 57, Issue 31
  • DOI: 10.1039/D1CC00574J

Sulfur-Impregnated Disordered Carbon Nanotubes Cathode for Lithium–Sulfur Batteries
journal, October 2011

  • Guo, Juchen; Xu, Yunhua; Wang, Chunsheng
  • Nano Letters, Vol. 11, Issue 10, p. 4288-4294
  • DOI: 10.1021/nl202297p

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Solidifying Cathode–Electrolyte Interface for Lithium–Sulfur Batteries
journal, June 2020

  • Wang, Wen‐Peng; Zhang, Juan; Chou, Jia
  • Advanced Energy Materials, Vol. 11, Issue 2
  • DOI: 10.1002/aenm.202000791

Atomistic Scale Analysis of the Carbonization Process for C/H/O/N-Based Polymers with the ReaxFF Reactive Force Field
journal, May 2019

  • Kowalik, Malgorzata; Ashraf, Chowdhury; Damirchi, Behzad
  • The Journal of Physical Chemistry B, Vol. 123, Issue 25
  • DOI: 10.1021/acs.jpcb.9b04298

Solvation Dynamics and the Nature of Reaction Barriers and Ion-Pair Intermediates in Carbocation Reactions
journal, June 2020

  • Roytman, Vladislav A.; Singleton, Daniel A.
  • Journal of the American Chemical Society, Vol. 142, Issue 29
  • DOI: 10.1021/jacs.0c06295

The Role of SO[sub 2] as an Additive to Organic Li-Ion Battery Electrolytes
journal, January 1997

  • Ein-Eli, Y.
  • Journal of The Electrochemical Society, Vol. 144, Issue 4
  • DOI: 10.1149/1.1837566

Recent advances in shuttle effect inhibition for lithium sulfur batteries
journal, December 2019


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Solvent Degradation and Polymerization in the Li-Metal Battery: Organic-Phase Formation in Solid-Electrolyte Interphases
journal, January 2022

  • Kuai, Dacheng; Balbuena, Perla B.
  • ACS Applied Materials & Interfaces, Vol. 14, Issue 2
  • DOI: 10.1021/acsami.1c20487

Sulfurized polyacrylonitrile for high-performance lithium sulfur batteries: advances and prospects
journal, January 2021

  • Zhao, Xiaohui; Wang, Chonglong; Li, Ziwei
  • Journal of Materials Chemistry A, Vol. 9, Issue 35
  • DOI: 10.1039/D1TA03300J

An Atomic Insight into the Chemical Origin and Variation of the Dielectric Constant in Liquid Electrolytes
journal, August 2021

  • Yao, Nan; Chen, Xiang; Shen, Xin
  • Angewandte Chemie International Edition, Vol. 60, Issue 39
  • DOI: 10.1002/anie.202107657

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

Edge sulfurized graphene nanoplatelets via vacuum mechano-chemical reaction for lithium–sulfur batteries
journal, May 2017


ReaxFF Reactive Force Field Simulations on the Influence of Teflon on Electrolyte Decomposition during Li/SWCNT Anode Discharge in Lithium-Sulfur Batteries
journal, January 2014

  • Islam, Md Mahbubul; Bryantsev, Vyacheslav S.; van Duin, Adri C. T.
  • Journal of The Electrochemical Society, Vol. 161, Issue 8
  • DOI: 10.1149/2.005408jes

Hierarchical Free-Standing Carbon-Nanotube Paper Electrodes with Ultrahigh Sulfur-Loading for Lithium-Sulfur Batteries
journal, July 2014

  • Yuan, Zhe; Peng, Hong-Jie; Huang, Jia-Qi
  • Advanced Functional Materials, Vol. 24, Issue 39
  • DOI: 10.1002/adfm.201401501

Binder-free and high-loading sulfurized polyacrylonitrile cathode for lithium/sulfur batteries
journal, January 2021

  • Kim, Huihun; Kim, Changhyeon; Sadan, Milan K.
  • RSC Advances, Vol. 11, Issue 26
  • DOI: 10.1039/D1RA02462K

Compositions and Formation Mechanisms of Solid-Electrolyte Interphase on Microporous Carbon/Sulfur Cathodes
journal, April 2020


A Polysulfide-Repulsive, In Situ Solidified Cathode–Electrolyte Interface for High-Performance Lithium–Sulfur Batteries
journal, January 2023

  • Yan, Min; Huang, Rui; Wang, Zhao-Yun
  • The Journal of Physical Chemistry C, Vol. 127, Issue 3
  • DOI: 10.1021/acs.jpcc.2c08468

One-Dimensional Carbon–Sulfur Composite Fibers for Na–S Rechargeable Batteries Operating at Room Temperature
journal, August 2013

  • Hwang, Tae Hoon; Jung, Dae Soo; Kim, Joo-Seong
  • Nano Letters, Vol. 13, Issue 9
  • DOI: 10.1021/nl402513x

Multiwfn: A multifunctional wavefunction analyzer
journal, December 2011

  • Lu, Tian; Chen, Feiwu
  • Journal of Computational Chemistry, Vol. 33, Issue 5
  • DOI: 10.1002/jcc.22885

Recognizing the Mechanism of Sulfurized Polyacrylonitrile Cathode Materials for Li–S Batteries and beyond in Al–S Batteries
journal, November 2018


Rational solvent molecule tuning for high-performance lithium metal battery electrolytes
journal, January 2022


First-principles explorations of the electrochemical lithiation dynamics of a multilayer graphene nanosheet-based sulfur–carbon composite
journal, January 2018

  • Perez Beltran, Saul; Balbuena, Perla B.
  • Journal of Materials Chemistry A, Vol. 6, Issue 37
  • DOI: 10.1039/C8TA04375B

Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions
journal, July 2019


Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool
journal, December 2009


Origin of shuttle-free sulfurized polyacrylonitrile in lithium-sulfur batteries
journal, April 2021


A Perspective toward Practical Lithium–Sulfur Batteries
journal, June 2020


Structural Transformation in a Sulfurized Polymer Cathode to Enable Long-Life Rechargeable Lithium–Sulfur Batteries
journal, April 2023

  • Wang, Shen; Lu, Bingyu; Cheng, Diyi
  • Journal of the American Chemical Society, Vol. 145, Issue 17
  • DOI: 10.1021/jacs.3c00628

Mechanistic understanding of the Sulfurized-Poly(acrylonitrile) cathode for lithium-sulfur batteries
journal, April 2020

  • Weret, Misganaw Adigo; Jeffrey Kuo, Chung-Feng; Zeleke, Tamene Simachew
  • Energy Storage Materials, Vol. 26
  • DOI: 10.1016/j.ensm.2019.11.022

ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials
journal, January 2015

  • Islam, Md Mahbubul; Ostadhossein, Alireza; Borodin, Oleg
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 5
  • DOI: 10.1039/C4CP04532G

Structure and Dynamics of Polysulfide Clusters in a Nonaqueous Solvent Mixture of 1,3-Dioxolane and 1,2-Dimethoxyethane
journal, February 2019


Li-Metal Anode in Dilute Electrolyte LiFSI/TMP: Electrochemical Stability Using Ab Initio Molecular Dynamics
journal, September 2020

  • Galvez-Aranda, Diego E.; Seminario, Jorge M.
  • The Journal of Physical Chemistry C, Vol. 124, Issue 40
  • DOI: 10.1021/acs.jpcc.0c04240

A Novel Conductive Polymer-Sulfur Composite Cathode Material for Rechargeable Lithium Batteries
journal, July 2002


Electrolytes with moderate lithium polysulfide solubility for high-performance long-calendar-life lithium–sulfur batteries
journal, July 2023

  • Gao, Xin; Yu, Zhiao; Wang, Jingyang
  • Proceedings of the National Academy of Sciences, Vol. 120, Issue 31
  • DOI: 10.1073/pnas.2301260120

Revisiting the Role of Polysulfides in Lithium-Sulfur Batteries
journal, March 2018


Doping of Carbon Materials for Metal-Free Electrocatalysis
journal, December 2018


Structural and Interphasial Stabilities of Sulfurized Polyacrylonitrile (SPAN) Cathode
journal, May 2023


VMD: Visual molecular dynamics
journal, February 1996