DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on Sun Dec 29 00:00:00 EST 2024

Title: Interface Design for High‐Performance All‐Solid‐State Lithium Batteries

Abstract

Abstract All‐solid‐state batteries suffer from high interface resistance and lithium dendrite growth leading to low Li plating/stripping Coulombic efficiency (CE) of <90% and low critical current density at high capacity. Here, simultaneously addresses both challenges are simultaneously addressed and the Li plating/stripping CE is significantly increased to 99.6% at 0.2 mA cm −2 /0.2 mAh cm −2 , and critical current density (CCD) of > 3.0 mA cm −2 /3.0 mAh cm −2 by inserting a mixed ionic‐electronic conductive (MIEC) and lithiophobic LiF‐C‐Li 3 N‐Bi nanocomposite interlayer between Li 6 PS 5 Cl electrolyte and Li anode. The highly lithiophobic LiF‐C‐Li 3 N‐Bi interlayer with high ionic conductivity (10 −5  S cm −1 ) and low electronic conductivity (3.4×10 −7  S cm −1 ) enables Li to plate on the current collector (CC) surface rather than on Li 6 PS 5 Cl surface avoiding Li 6 PS 5 Cl electrolyte reduction. During initial Li plating on CC, Li penetrates into porous LiF‐C‐Li 3 N‐Bi interlayer and lithiates Bi nanoparticles into Li 3 Bi. The lithiophilic Li 3 Bi and Li 3 N nanoparticles in LiF‐C‐Li 3 N‐Li 3 Bi sub‐interlayer will move to CC along with plated Li, forming LiF‐C/Li 3 N‐Li 3 Bi lithiophobic/lithiophilic sublayer during the following Limore » stripping. This interlayer enables Co 0.1 Fe 0.9 S 2 /Li 6 PS 5 Cl/Li cell with an areal capacity of 1.4 mAh cm −2 to achieve a cycle life of >850 cycles at 150 mA g −1 . The lithiophobic/lithiophilic interlayer enables solid‐state metal batteries to simultaneously achieve high energy and long cycle life.« less

Authors:
ORCiD logo [1];  [2];  [1];  [1];  [1]; ORCiD logo [1]
  1. Department of Chemical and Biomolecular Engineering University of Maryland College Park MD 20740 USA
  2. School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
2267595
Grant/Contract Number:  
DEEE0008856
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Name: Advanced Energy Materials; Journal ID: ISSN 1614-6832
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Wan, Hongli, Zhang, Bao, Liu, Sufu, Wang, Zeyi, Xu, Jijian, and Wang, Chunsheng. Interface Design for High‐Performance All‐Solid‐State Lithium Batteries. Germany: N. p., 2023. Web. doi:10.1002/aenm.202303046.
Wan, Hongli, Zhang, Bao, Liu, Sufu, Wang, Zeyi, Xu, Jijian, & Wang, Chunsheng. Interface Design for High‐Performance All‐Solid‐State Lithium Batteries. Germany. https://doi.org/10.1002/aenm.202303046
Wan, Hongli, Zhang, Bao, Liu, Sufu, Wang, Zeyi, Xu, Jijian, and Wang, Chunsheng. Fri . "Interface Design for High‐Performance All‐Solid‐State Lithium Batteries". Germany. https://doi.org/10.1002/aenm.202303046.
@article{osti_2267595,
title = {Interface Design for High‐Performance All‐Solid‐State Lithium Batteries},
author = {Wan, Hongli and Zhang, Bao and Liu, Sufu and Wang, Zeyi and Xu, Jijian and Wang, Chunsheng},
abstractNote = {Abstract All‐solid‐state batteries suffer from high interface resistance and lithium dendrite growth leading to low Li plating/stripping Coulombic efficiency (CE) of <90% and low critical current density at high capacity. Here, simultaneously addresses both challenges are simultaneously addressed and the Li plating/stripping CE is significantly increased to 99.6% at 0.2 mA cm −2 /0.2 mAh cm −2 , and critical current density (CCD) of > 3.0 mA cm −2 /3.0 mAh cm −2 by inserting a mixed ionic‐electronic conductive (MIEC) and lithiophobic LiF‐C‐Li 3 N‐Bi nanocomposite interlayer between Li 6 PS 5 Cl electrolyte and Li anode. The highly lithiophobic LiF‐C‐Li 3 N‐Bi interlayer with high ionic conductivity (10 −5  S cm −1 ) and low electronic conductivity (3.4×10 −7  S cm −1 ) enables Li to plate on the current collector (CC) surface rather than on Li 6 PS 5 Cl surface avoiding Li 6 PS 5 Cl electrolyte reduction. During initial Li plating on CC, Li penetrates into porous LiF‐C‐Li 3 N‐Bi interlayer and lithiates Bi nanoparticles into Li 3 Bi. The lithiophilic Li 3 Bi and Li 3 N nanoparticles in LiF‐C‐Li 3 N‐Li 3 Bi sub‐interlayer will move to CC along with plated Li, forming LiF‐C/Li 3 N‐Li 3 Bi lithiophobic/lithiophilic sublayer during the following Li stripping. This interlayer enables Co 0.1 Fe 0.9 S 2 /Li 6 PS 5 Cl/Li cell with an areal capacity of 1.4 mAh cm −2 to achieve a cycle life of >850 cycles at 150 mA g −1 . The lithiophobic/lithiophilic interlayer enables solid‐state metal batteries to simultaneously achieve high energy and long cycle life.},
doi = {10.1002/aenm.202303046},
journal = {Advanced Energy Materials},
number = ,
volume = ,
place = {Germany},
year = {Fri Dec 29 00:00:00 EST 2023},
month = {Fri Dec 29 00:00:00 EST 2023}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on December 29, 2024
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode
journal, September 2018


In situ Raman studies on lithiated single-wall carbon nanotubes in liquid ammonia
journal, July 2005


Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells
journal, July 2019

  • Kasemchainan, Jitti; Zekoll, Stefanie; Spencer Jolly, Dominic
  • Nature Materials, Vol. 18, Issue 10
  • DOI: 10.1038/s41563-019-0438-9

Solid‐State Electrolyte Design for Lithium Dendrite Suppression
journal, October 2020


Bifunctional Interphase-Enabled Li 10 GeP 2 S 12 Electrolytes for Lithium–Sulfur Battery
journal, February 2021


Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery
journal, December 2018


Sandwiched Li plating between Lithiophilic-Lithiophobic gradient Silver@Fullerene interphase layer for ultrastable lithium metal anodes
journal, February 2022


Fundamental study on the wetting property of liquid lithium
journal, September 2018


Porous Mixed Ionic Electronic Conductor Interlayers for Solid-State Batteries
journal, January 2021


Characterizing the Li-Solid-Electrolyte Interface Dynamics as a Function of Stack Pressure and Current Density
journal, September 2019


A more stable lithium anode by mechanical constriction for solid state batteries
journal, January 2020

  • Su, Yibo; Ye, Luhan; Fitzhugh, William
  • Energy & Environmental Science, Vol. 13, Issue 3
  • DOI: 10.1039/C9EE04007B

Unlocking the Energy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes
journal, September 2018


High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life
journal, October 2016


Unravelling the Chemistry and Microstructure Evolution of a Cathodic Interface in Sulfide-Based All-Solid-State Li-Ion Batteries
journal, September 2019


Wetting properties of liquid lithium on lithium compounds
journal, April 2017


Insight into cathode surface to boost the performance of solid-state batteries
journal, March 2021


Electrochemical lithium intercalation into multiwall carbon nanotubes: a micro-Raman study
journal, November 2000


Ultrastable Anode Interface Achieved by Fluorinating Electrolytes for All-Solid-State Li Metal Batteries
journal, March 2020


High-power all-solid-state batteries using sulfide superionic conductors
journal, March 2016


Suppressing Li Dendrite Formation in Li 2 S-P 2 S 5 Solid Electrolyte by LiI Incorporation
journal, March 2018

  • Han, Fudong; Yue, Jie; Zhu, Xiangyang
  • Advanced Energy Materials, Vol. 8, Issue 18
  • DOI: 10.1002/aenm.201703644

Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
journal, February 2016

  • Yan, Kai; Lu, Zhenda; Lee, Hyun-Wook
  • Nature Energy, Vol. 1, Issue 3, Article No. 16010
  • DOI: 10.1038/nenergy.2016.10

Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries
journal, February 2018


Diffusion Limitation of Lithium Metal and Li–Mg Alloy Anodes on LLZO Type Solid Electrolytes as a Function of Temperature and Pressure
journal, October 2019

  • Krauskopf, Thorben; Mogwitz, Boris; Rosenbach, Carolin
  • Advanced Energy Materials, Vol. 9, Issue 44
  • DOI: 10.1002/aenm.201902568

Tuning Interface Lithiophobicity for Lithium Metal Solid-State Batteries
journal, December 2021


New Family of Argyrodite Thioantimonate Lithium Superionic Conductors
journal, October 2019

  • Zhou, Laidong; Assoud, Abdeljalil; Zhang, Qiang
  • Journal of the American Chemical Society, Vol. 141, Issue 48
  • DOI: 10.1021/jacs.9b08357

An Electron/Ion Dual‐Conductive Alloy Framework for High‐Rate and High‐Capacity Solid‐State Lithium‐Metal Batteries
journal, September 2018


High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes
journal, March 2020


Semi-solid alkali metal electrodes enabling high critical current densities in solid electrolyte batteries
journal, March 2021


Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
journal, December 2015


Electrolyte design for Li metal-free Li batteries
journal, April 2020


Stress evolution during cycling of alloy-anode solid-state batteries
journal, September 2021