DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on Fri Nov 29 00:00:00 EST 2024

Title: Specificity determinants revealed by the structure of glycosyltransferase Campylobacter concisus PglA

Abstract

Abstract In selected Campylobacter species, the biosynthesis of N‐linked glycoconjugates via the pgl pathway is essential for pathogenicity and survival. However, most of the membrane‐associated GT‐B fold glycosyltransferases responsible for diversifying glycans in this pathway have not been structurally characterized which hinders the understanding of the structural factors that govern substrate specificity and prediction of resulting glycan composition. Herein, we report the 1.8 Å resolution structure of Campylobacter concisus PglA, the glycosyltransferase responsible for the transfer of N ‐acetylgalatosamine (GalNAc) from uridine 5′‐diphospho‐ N ‐acetylgalactosamine (UDP‐GalNAc) to undecaprenyl‐diphospho‐ N , N ′‐diacetylbacillosamine (UndPP‐diNAcBac) in complex with the sugar donor GalNAc. This study identifies distinguishing characteristics that set PglA apart within the GT4 enzyme family. Computational docking of the structure in the membrane in comparison to homologs points to differences in interactions with the membrane‐embedded acceptor and the structural analysis of the complex together with bioinformatics and site‐directed mutagenesis identifies donor sugar binding motifs. Notably, E113, conserved solely among PglA enzymes, forms a hydrogen bond with the GalNAc C6″‐OH. Mutagenesis of E113 reveals activity consistent with this role in substrate binding, rather than stabilization of the oxocarbenium ion transition state, a function sometimes ascribed to the corresponding residue in GT4 homologs. Themore » bioinformatic analyses reveal a substrate‐specificity motif, showing that Pro281 in a substrate binding loop of PglA directs configurational preference for GalNAc over GlcNAc. This proline is replaced by a conformationally flexible glycine, even in distant homologs, which favor substrates with the same stereochemistry at C4, such as glucose. The signature loop is conserved across all Campylobacter PglA enzymes, emphasizing its importance in substrate specificity.« less

Authors:
 [1];  [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Department of Chemistry Boston University Boston Massachusetts USA
  2. Department of Biology Massachusetts Institute of Technology Cambridge Massachusetts USA, Department of Chemistry Massachusetts Institute of Technology Cambridge Massachusetts USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
2263263
Grant/Contract Number:  
DE‐AC02‐06CH11357
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Protein Science
Additional Journal Information:
Journal Name: Protein Science Journal Volume: 33 Journal Issue: 1; Journal ID: ISSN 0961-8368
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Vuksanovic, Nemanja, Clasman, Jozlyn R., Imperiali, Barbara, and Allen, Karen N. Specificity determinants revealed by the structure of glycosyltransferase Campylobacter concisus PglA. United Kingdom: N. p., 2023. Web. doi:10.1002/pro.4848.
Vuksanovic, Nemanja, Clasman, Jozlyn R., Imperiali, Barbara, & Allen, Karen N. Specificity determinants revealed by the structure of glycosyltransferase Campylobacter concisus PglA. United Kingdom. https://doi.org/10.1002/pro.4848
Vuksanovic, Nemanja, Clasman, Jozlyn R., Imperiali, Barbara, and Allen, Karen N. Wed . "Specificity determinants revealed by the structure of glycosyltransferase Campylobacter concisus PglA". United Kingdom. https://doi.org/10.1002/pro.4848.
@article{osti_2263263,
title = {Specificity determinants revealed by the structure of glycosyltransferase Campylobacter concisus PglA},
author = {Vuksanovic, Nemanja and Clasman, Jozlyn R. and Imperiali, Barbara and Allen, Karen N.},
abstractNote = {Abstract In selected Campylobacter species, the biosynthesis of N‐linked glycoconjugates via the pgl pathway is essential for pathogenicity and survival. However, most of the membrane‐associated GT‐B fold glycosyltransferases responsible for diversifying glycans in this pathway have not been structurally characterized which hinders the understanding of the structural factors that govern substrate specificity and prediction of resulting glycan composition. Herein, we report the 1.8 Å resolution structure of Campylobacter concisus PglA, the glycosyltransferase responsible for the transfer of N ‐acetylgalatosamine (GalNAc) from uridine 5′‐diphospho‐ N ‐acetylgalactosamine (UDP‐GalNAc) to undecaprenyl‐diphospho‐ N , N ′‐diacetylbacillosamine (UndPP‐diNAcBac) in complex with the sugar donor GalNAc. This study identifies distinguishing characteristics that set PglA apart within the GT4 enzyme family. Computational docking of the structure in the membrane in comparison to homologs points to differences in interactions with the membrane‐embedded acceptor and the structural analysis of the complex together with bioinformatics and site‐directed mutagenesis identifies donor sugar binding motifs. Notably, E113, conserved solely among PglA enzymes, forms a hydrogen bond with the GalNAc C6″‐OH. Mutagenesis of E113 reveals activity consistent with this role in substrate binding, rather than stabilization of the oxocarbenium ion transition state, a function sometimes ascribed to the corresponding residue in GT4 homologs. The bioinformatic analyses reveal a substrate‐specificity motif, showing that Pro281 in a substrate binding loop of PglA directs configurational preference for GalNAc over GlcNAc. This proline is replaced by a conformationally flexible glycine, even in distant homologs, which favor substrates with the same stereochemistry at C4, such as glucose. The signature loop is conserved across all Campylobacter PglA enzymes, emphasizing its importance in substrate specificity.},
doi = {10.1002/pro.4848},
journal = {Protein Science},
number = 1,
volume = 33,
place = {United Kingdom},
year = {Wed Dec 20 00:00:00 EST 2023},
month = {Wed Dec 20 00:00:00 EST 2023}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on November 29, 2024
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Structural and enzymatic analyses of a glucosyltransferase Alr3699/HepE involved inAnabaenaheterocyst envelop polysaccharide biosynthesis
journal, December 2015

  • Wang, Xue-Ping; Jiang, Yong-Liang; Dai, Ya-Nan
  • Glycobiology, Vol. 26, Issue 5
  • DOI: 10.1093/glycob/cwv167

High-throughput stability screening for detergent-solubilized membrane proteins
journal, July 2019


Functional analysis of the Campylobacter jejuni N‐linked protein glycosylation pathway
journal, February 2005


Synergistic computational and experimental studies of a phosphoglycosyl transferase membrane/ligand ensemble
journal, October 2023

  • Majumder, Ayan; Vuksanovic, Nemanja; Ray, Leah C.
  • Journal of Biological Chemistry, Vol. 299, Issue 10
  • DOI: 10.1016/j.jbc.2023.105194

Membrane association of monotopic phosphoglycosyl transferase underpins function
journal, May 2018


Emerging structural insights into glycosyltransferase-mediated synthesis of glycans
journal, August 2019


Structure-function relationships of membrane-associated GT-B glycosyltransferases
journal, November 2013


The Clinical Importance of Campylobacter concisus and Other Human Hosted Campylobacter Species
journal, July 2018

  • Liu, Fang; Ma, Rena; Wang, Yiming
  • Frontiers in Cellular and Infection Microbiology, Vol. 8
  • DOI: 10.3389/fcimb.2018.00243

Insights into the Synthesis of Lipopolysaccharide and Antibiotics through the Structures of Two Retaining Glycosyltransferases from Family GT4
journal, November 2006


Expanding the viewpoint: Leveraging sequence information in enzymology
journal, February 2023


Structural basis of the molecular ruler mechanism of a bacterial glycosyltransferase
journal, January 2018

  • Ramírez, Ana S.; Boilevin, Jérémy; Mehdipour, Ahmad Reza
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-02880-2

Opportunities and Challenges of Bacterial Glycosylation for the Development of Novel Antibacterial Strategies
journal, September 2021

  • Yakovlieva, Liubov; Fülleborn, Julius A.; Walvoort, Marthe T. C.
  • Frontiers in Microbiology, Vol. 12
  • DOI: 10.3389/fmicb.2021.745702

The conformational plasticity of glycosyltransferases
journal, October 2016


Diversity in the Protein N-Glycosylation Pathways Within the Campylobacter Genus
journal, November 2012

  • Nothaft, Harald; Scott, Nichollas E.; Vinogradov, Evgeny
  • Molecular & Cellular Proteomics, Vol. 11, Issue 11
  • DOI: 10.1074/mcp.M112.021519

Formation of a Covalent Glycosyl–Enzyme Species in a Retaining Glycosyltransferase
journal, September 2013

  • Rojas‐Cervellera, Víctor; Ardèvol, Albert; Boero, Mauro
  • Chemistry – A European Journal, Vol. 19, Issue 42
  • DOI: 10.1002/chem.201302898

Defining Early Steps in B. subtilis Biofilm Biosynthesis
preprint, February 2023


Highly accurate protein structure prediction with AlphaFold
journal, July 2021


OPM database and PPM web server: resources for positioning of proteins in membranes
journal, September 2011

  • Lomize, Mikhail A.; Pogozheva, Irina D.; Joo, Hyeon
  • Nucleic Acids Research, Vol. 40, Issue D1
  • DOI: 10.1093/nar/gkr703

Influence of Protein Glycosylation on Campylobacter fetus Physiology
journal, June 2020


In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation
journal, September 2005

  • Glover, K. J.; Weerapana, E.; Imperiali, B.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 40
  • DOI: 10.1073/pnas.0507311102

Functional analysis of the Helicobacter pullorum N-linked protein glycosylation system
journal, January 2018

  • Jervis, Adrian J.; Wood, Alison G.; Cain, Joel A.
  • Glycobiology, Vol. 28, Issue 4
  • DOI: 10.1093/glycob/cwx110

Monotopic Membrane Proteins Join the Fold
journal, January 2019


Analysis of membrane and surface protein sequences with the hydrophobic moment plot
journal, October 1984


Joint X-ray and neutron refinement with phenix.refine
journal, October 2010

  • Afonine, Pavel V.; Mustyakimov, Marat; Grosse-Kunstleve, Ralf W.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 11
  • DOI: 10.1107/S0907444910026582

Campylobacter concisus – A New Player in Intestinal Disease
journal, January 2012

  • Kaakoush, Nadeem Omar; Mitchell, Hazel Marjory
  • Frontiers in Cellular and Infection Microbiology, Vol. 2
  • DOI: 10.3389/fcimb.2012.00004

Glycoconjugates Play a Key Role in Campylobacter jejuni Infection: Interactions between Host and Pathogen
journal, January 2012

  • Day, Christopher James; Semchenko, Evgeny Alexander; Korolik, Victoria
  • Frontiers in Cellular and Infection Microbiology, Vol. 2
  • DOI: 10.3389/fcimb.2012.00009

The Sweet Tooth of Bacteria: Common Themes in Bacterial Glycoconjugates
journal, September 2014

  • Tytgat, H. L. P.; Lebeer, S.
  • Microbiology and Molecular Biology Reviews, Vol. 78, Issue 3
  • DOI: 10.1128/MMBR.00007-14

WebLogo: A Sequence Logo Generator
journal, May 2004

  • Crooks, Gavin E.; Hon, Gary; Chandonia, John-Marc
  • Genome Research, Vol. 14, Issue 6, p. 1188-1190
  • DOI: 10.1101/gr.849004

Structures and mechanisms of glycosyltransferases
journal, July 2005

  • Breton, Christelle; Šnajdrová, Lenka; Jeanneau, Charlotte
  • Glycobiology, Vol. 16, Issue 2
  • DOI: 10.1093/glycob/cwj016

The wbnH gene of Escherichia coli O86:H2 encodes an α-1,3-N-acetylgalactosaminyl transferase involved in the O-repeating unit biosynthesis
journal, June 2006

  • Yi, Wen; Yao, Qingjia; Zhang, Yalong
  • Biochemical and Biophysical Research Communications, Vol. 344, Issue 2
  • DOI: 10.1016/j.bbrc.2006.03.181

Dali server: structural unification of protein families
journal, May 2022


Campylobacter jejuni: A brief overview on pathogenicity-associated factors and disease-mediating mechanisms
journal, April 2010

  • Dasti, Javid I.; Tareen, A. Malik; Lugert, Raimond
  • International Journal of Medical Microbiology, Vol. 300, Issue 4
  • DOI: 10.1016/j.ijmm.2009.07.002

Coot model-building tools for molecular graphics
journal, November 2004

  • Emsley, Paul; Cowtan, Kevin
  • Acta Crystallographica Section D Biological Crystallography, Vol. 60, Issue 12, p. 2126-2132
  • DOI: 10.1107/S0907444904019158

Metazoans evolved by taking domains from soluble proteins to expand intercellular communication network
journal, April 2015

  • Nam, Hyun-Jun; Kim, Inhae; Bowie, James U.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep09576

The Molecular Mechanism of Enzymatic Glycosyl Transfer with Retention of Configuration: Evidence for a Short-Lived Oxocarbenium-Like Species
journal, September 2011

  • Ardèvol, Albert; Rovira, Carme
  • Angewandte Chemie International Edition, Vol. 50, Issue 46
  • DOI: 10.1002/anie.201104623

Rampant Exchange of the Structure and Function of Extramembrane Domains between Membrane and Water Soluble Proteins
journal, March 2013


Characterization of the Structurally Diverse N-Linked Glycans of Campylobacter Species
journal, May 2012

  • Jervis, Adrian J.; Butler, Jonathan A.; Lawson, Andrew J.
  • Journal of Bacteriology, Vol. 194, Issue 9
  • DOI: 10.1128/JB.00042-12

HDX-MS Reveals Substrate-Dependent, Localized EX1 Conformational Dynamics in the Retaining GT-B Glycosyltransferase, MshA
journal, August 2023


PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

Carbohydrate–Aromatic Interactions in Proteins
journal, November 2015

  • Hudson, Kieran L.; Bartlett, Gail J.; Diehl, Roger C.
  • Journal of the American Chemical Society, Vol. 137, Issue 48
  • DOI: 10.1021/jacs.5b08424

The structure of WbnH in a near active state
journal, April 2015


Glycosyltransferases: Structures, Functions, and Mechanisms
journal, June 2008


Paired refinement under the control ofPAIREF
journal, June 2020


Acceptor Substrate Discrimination in Phosphatidyl-myo-inositol Mannoside Synthesis
journal, November 2010

  • Batt, Sarah M.; Jabeen, Talat; Mishra, Arun K.
  • Journal of Biological Chemistry, Vol. 285, Issue 48
  • DOI: 10.1074/jbc.M110.165407

Mapping the glycosyltransferase fold landscape using interpretable deep learning
journal, September 2021


Helicobacter pullorum: An Emerging Zoonotic Pathogen
journal, April 2017


Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7
journal, June 2008

  • Langer, Gerrit; Cohen, Serge X.; Lamzin, Victor S.
  • Nature Protocols, Vol. 3, Issue 7
  • DOI: 10.1038/nprot.2008.91

Carbohydrate–Aromatic Interactions
journal, June 2012

  • Asensio, Juan Luis; Ardá, Ana; Cañada, Francisco Javier
  • Accounts of Chemical Research, Vol. 46, Issue 4
  • DOI: 10.1021/ar300024d

Molecular Recognition and Interfacial Catalysis by the Essential Phosphatidylinositol Mannosyltransferase PimA from Mycobacteria
journal, May 2007

  • Guerin, Marcelo E.; Kordulakova, Jana; Schaeffer, Francis
  • Journal of Biological Chemistry, Vol. 282, Issue 28
  • DOI: 10.1074/jbc.M702087200

Phaser crystallographic software
journal, July 2007

  • McCoy, Airlie J.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
  • Journal of Applied Crystallography, Vol. 40, Issue 4
  • DOI: 10.1107/S0021889807021206