DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Regulating phase behavior of nanoparticle assemblies through engineering of DNA-mediated isotropic interactions

Abstract

Self-assembly of isotropically interacting particles into desired crystal structures could allow for creating designed functional materials via simple synthetic means. However, the ability to use isotropic particles to assemble different crystal types remains challenging, especially for generating low-coordinated crystal structures. Here, we demonstrate that isotropic pairwise interparticle interactions can be rationally tuned through the design of DNA shells in a range that allows transition from common, high-coordinated FCC-CuAu and BCC-CsCl lattices, to more exotic symmetries for spherical particles such as the SC-NaCl lattice and to low-coordinated crystal structures (i.e., cubic diamond, open honeycomb). The combination of computational and experimental approaches reveals such a design strategy using DNA-functionalized nanoparticles and successfully demonstrates the realization of BCC-CsCl, SC-NaCl, and a weakly ordered cubic diamond phase. The study reveals the phase behavior of isotropic nanoparticles for DNA–shell tunable interaction, which, due to the ease of synthesis is promising for the practical realization of non-close-packed lattices.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2];  [3]; ORCiD logo [4];  [5]; ORCiD logo [6]
  1. Department of Chemical Engineering and Materials Science, University of Minnesota–Twin Cities, Minneapolis, MN 55455
  2. Department of Chemical Engineering, Columbia University, New York, NY 10027
  3. Artie McFerrin Department of Chemical Engineering, Texas A&,M University, College Station, TX 77843
  4. Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973
  5. Department of Chemical Engineering, Columbia University, New York, NY 10027, Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027
  6. Artie McFerrin Department of Chemical Engineering, Texas A&,M University, College Station, TX 77843, Department of Chemistry, Texas A&,M University, College Station, TX 77843, Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&,M University, College Station, TX 77843
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE; USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF); National Science Foundation (NSF)
OSTI Identifier:
2242531
Alternate Identifier(s):
OSTI ID: 2338122
Report Number(s):
BNL-225492-2024-JAAM
Journal ID: ISSN 0027-8424; e2302037120
Grant/Contract Number:  
SC0008772; SC0012704; AC02-05CH11231; CBET 1953245; A-2113-20220331; TG-MCB120014
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America Journal Volume: 120 Journal Issue: 52; Journal ID: ISSN 0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; self-assembly; nanoparticles; structural DNA nanotechnology; colloidal crystallization; soft matter

Citation Formats

Mao, Runfang, Minevich, Brian, McKeen, Daniel, Chen, Qizan, Lu, Fang, Gang, Oleg, and Mittal, Jeetain. Regulating phase behavior of nanoparticle assemblies through engineering of DNA-mediated isotropic interactions. United States: N. p., 2023. Web. doi:10.1073/pnas.2302037120.
Mao, Runfang, Minevich, Brian, McKeen, Daniel, Chen, Qizan, Lu, Fang, Gang, Oleg, & Mittal, Jeetain. Regulating phase behavior of nanoparticle assemblies through engineering of DNA-mediated isotropic interactions. United States. https://doi.org/10.1073/pnas.2302037120
Mao, Runfang, Minevich, Brian, McKeen, Daniel, Chen, Qizan, Lu, Fang, Gang, Oleg, and Mittal, Jeetain. Mon . "Regulating phase behavior of nanoparticle assemblies through engineering of DNA-mediated isotropic interactions". United States. https://doi.org/10.1073/pnas.2302037120.
@article{osti_2242531,
title = {Regulating phase behavior of nanoparticle assemblies through engineering of DNA-mediated isotropic interactions},
author = {Mao, Runfang and Minevich, Brian and McKeen, Daniel and Chen, Qizan and Lu, Fang and Gang, Oleg and Mittal, Jeetain},
abstractNote = {Self-assembly of isotropically interacting particles into desired crystal structures could allow for creating designed functional materials via simple synthetic means. However, the ability to use isotropic particles to assemble different crystal types remains challenging, especially for generating low-coordinated crystal structures. Here, we demonstrate that isotropic pairwise interparticle interactions can be rationally tuned through the design of DNA shells in a range that allows transition from common, high-coordinated FCC-CuAu and BCC-CsCl lattices, to more exotic symmetries for spherical particles such as the SC-NaCl lattice and to low-coordinated crystal structures (i.e., cubic diamond, open honeycomb). The combination of computational and experimental approaches reveals such a design strategy using DNA-functionalized nanoparticles and successfully demonstrates the realization of BCC-CsCl, SC-NaCl, and a weakly ordered cubic diamond phase. The study reveals the phase behavior of isotropic nanoparticles for DNA–shell tunable interaction, which, due to the ease of synthesis is promising for the practical realization of non-close-packed lattices.},
doi = {10.1073/pnas.2302037120},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 52,
volume = 120,
place = {United States},
year = {Mon Dec 18 00:00:00 EST 2023},
month = {Mon Dec 18 00:00:00 EST 2023}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1073/pnas.2302037120

Save / Share:

Works referenced in this record:

Structural diversity in binary nanoparticle superlattices
journal, January 2006

  • Shevchenko, Elena V.; Talapin, Dmitri V.; Kotov, Nicholas A.
  • Nature, Vol. 439, Issue 7072, p. 55-59
  • DOI: 10.1038/nature04414

Nanoparticle Superlattices as Quasi-Frank-Kasper Phases
journal, September 2017


Resilient three-dimensional ordered architectures assembled from nanoparticles by DNA
journal, March 2021

  • Majewski, Pawel W.; Michelson, Aaron; Cordeiro, Marco A. L.
  • Science Advances, Vol. 7, Issue 12
  • DOI: 10.1126/sciadv.abf0617

Regioselective surface encoding of nanoparticles for programmable self-assembly
journal, December 2018


Colloidal crystals with diamond symmetry at optical lengthscales
journal, February 2017

  • Wang, Yifan; Jenkins, Ian C.; McGinley, James T.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14173

Effect of mono- and multi-valent ionic environments on the in-lattice nanoparticle-grafted single-stranded DNA
journal, January 2022

  • Srivastava, Sunita; Chhabra, Anuj; Gang, Oleg
  • Soft Matter, Vol. 18, Issue 3
  • DOI: 10.1039/D1SM01171E

Superlattices assembled through shape-induced directional binding
journal, April 2015

  • Lu, Fang; Yager, Kevin G.; Zhang, Yugang
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7912

Communication: Designed diamond ground state via optimized isotropic monotonic pair potentials
journal, February 2013

  • Marcotte, É.; Stillinger, F. H.; Torquato, Salvatore
  • The Journal of Chemical Physics, Vol. 138, Issue 6
  • DOI: 10.1063/1.4790634

Automated crystal characterization with a fast neighborhood graph analysis method
journal, January 2018

  • Reinhart, Wesley F.; Panagiotopoulos, Athanassios Z.
  • Soft Matter, Vol. 14, Issue 29
  • DOI: 10.1039/C8SM00960K

A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems
journal, October 2013

  • Zhang, Yugang; Lu, Fang; Yager, Kevin G.
  • Nature Nanotechnology, Vol. 8, Issue 11
  • DOI: 10.1038/nnano.2013.209

Topotactic Interconversion of Nanoparticle Superlattices
journal, August 2013


DNA-guided crystallization of colloidal nanoparticles
journal, January 2008

  • Nykypanchuk, Dmytro; Maye, Mathew M.; van der Lelie, Daniel
  • Nature, Vol. 451, Issue 7178, p. 549-552
  • DOI: 10.1038/nature06560

Temperature-Controlled Reconfigurable Nanoparticle Binary Superlattices
journal, May 2021


Stoichiometric control of DNA-grafted colloid self-assembly
journal, April 2015

  • Vo, Thi; Venkatasubramanian, Venkat; Kumar, Sanat
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 16
  • DOI: 10.1073/pnas.1420907112

Designing convex repulsive pair potentials that favor assembly of kagome and snub square lattices
journal, August 2016

  • Piñeros, William D.; Baldea, Michael; Truskett, Thomas M.
  • The Journal of Chemical Physics, Vol. 145, Issue 5
  • DOI: 10.1063/1.4960113

Morphology Diagram of a Diblock Copolymer−Aluminosilicate Nanoparticle System
journal, November 2009

  • Garcia, Benjamin C.; Kamperman, Marleen; Ulrich, Ralph
  • Chemistry of Materials, Vol. 21, Issue 22
  • DOI: 10.1021/cm901885c

Revisiting the Frenkel-Ladd method to compute the free energy of solids: The Einstein molecule approach
journal, October 2007

  • Vega, Carlos; Noya, Eva G.
  • The Journal of Chemical Physics, Vol. 127, Issue 15
  • DOI: 10.1063/1.2790426

Directed self-assembly of a colloidal kagome lattice
journal, January 2011

  • Chen, Qian; Bae, Sung Chul; Granick, Steve
  • Nature, Vol. 469, Issue 7330
  • DOI: 10.1038/nature09713

DNA-nanoparticle superlattices formed from anisotropic building blocks
journal, October 2010

  • Jones, Matthew R.; Macfarlane, Robert J.; Lee, Byeongdu
  • Nature Materials, Vol. 9, Issue 11, p. 913-917
  • DOI: 10.1038/nmat2870

Ionic solids from common colloids
journal, April 2020


Predictive Self-Assembly of Polyhedra into Complex Structures
journal, July 2012


Light-Harvesting Nanoparticle Core–Shell Clusters with Controllable Optical Output
journal, May 2015

  • Sun, Dazhi; Tian, Ye; Zhang, Yugang
  • ACS Nano, Vol. 9, Issue 6
  • DOI: 10.1021/nn507331z

Anisotropy of building blocks and their assembly into complex structures
journal, August 2007

  • Glotzer, Sharon C.; Solomon, Michael J.
  • Nature Materials, Vol. 6, Issue 8, p. 557-562
  • DOI: 10.1038/nmat1949

Directed Assembly of Quantum Dots Using Brush Block Copolymers for Well-Ordered Nonlinear Optical Nanocomposites
journal, July 2016


Dictating Nanoparticle Assembly via Systems-Level Control of Molecular Multivalency
journal, August 2019

  • Santos, Peter J.; Cao, Zhen; Zhang, Jianyuan
  • Journal of the American Chemical Society, Vol. 141, Issue 37
  • DOI: 10.1021/jacs.9b04999

Structural Coloration with Nonclose‐Packed Array of Bidisperse Colloidal Particles
journal, January 2019


Solid-State Lithium Metal Batteries Promoted by Nanotechnology: Progress and Prospects
journal, May 2017


Altering DNA-Programmable Colloidal Crystallization Paths by Modulating Particle Repulsion
journal, July 2017


Nanoparticle Superlattice Engineering with DNA
journal, October 2011


Inverse design of simple pair potentials for the self-assembly of complex structures
journal, November 2018

  • Adorf, Carl S.; Antonaglia, James; Dshemuchadse, Julia
  • The Journal of Chemical Physics, Vol. 149, Issue 20
  • DOI: 10.1063/1.5063802

Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy
journal, October 2001

  • Auer, Stefan; Frenkel, Daan
  • Nature, Vol. 413, Issue 6857
  • DOI: 10.1038/35099513

Transitioning DNA-Engineered Nanoparticle Superlattices from Solution to the Solid State
journal, July 2012

  • Auyeung, Evelyn; Macfarlane, Robert J.; Choi, Chung Hang J.
  • Advanced Materials, Vol. 24, Issue 38
  • DOI: 10.1002/adma.201202069

Colloidal Particles with Triangular Patches
journal, June 2021


Designing DNA-grafted particles that self-assemble into desired crystalline structures using the genetic algorithm
journal, October 2013

  • Srinivasan, B.; Vo, T.; Zhang, Y.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 46
  • DOI: 10.1073/pnas.1316533110

Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions
journal, May 2015

  • Zhang, Yugang; Pal, Suchetan; Srinivasan, Babji
  • Nature Materials, Vol. 14, Issue 8
  • DOI: 10.1038/nmat4296

Inverse design of multicomponent assemblies
journal, March 2018

  • Piñeros, William D.; Lindquist, Beth A.; Jadrich, Ryan B.
  • The Journal of Chemical Physics, Vol. 148, Issue 10
  • DOI: 10.1063/1.5021648

Design of two-dimensional particle assemblies using isotropic pair interactions with an attractive well
journal, November 2017

  • Piñeros, William D.; Jadrich, Ryan B.; Truskett, Thomas M.
  • AIP Advances, Vol. 7, Issue 11
  • DOI: 10.1063/1.5005954

Symmetry-Breaking and Self-Sorting in Block Copolymer-Based Multicomponent Nanocomposites
journal, May 2022


Self-assembly of nanocrystals into strongly electronically coupled all-inorganic supercrystals
journal, March 2022


Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool
journal, December 2009


Evolution of Block Copolymer Lithography to Highly Ordered Square Arrays
journal, October 2008


DNA-programmable nanoparticle crystallization
journal, January 2008

  • Park, Sung Yong; Lytton-Jean, Abigail K. R.; Lee, Byeongdu
  • Nature, Vol. 451, Issue 7178, p. 553-556
  • DOI: 10.1038/nature06508

Comprehensive view of microscopic interactions between DNA-coated colloids
journal, April 2022


Extension of the Einstein molecule method for solid free energy calculation to non-periodic and semi-periodic systems
journal, August 2019

  • Pretti, Evan; Mittal, Jeetain
  • The Journal of Chemical Physics, Vol. 151, Issue 5
  • DOI: 10.1063/1.5100960

Nanopore-Based DNA Hard Drives for Rewritable and Secure Data Storage
journal, March 2020


Self-Assembly of DNA-Functionalized Nanoparticles Guided by Binding Kinetics
journal, December 2020


Phase Behavior of Nanoparticles Assembled by DNA Linkers
journal, January 2009


Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications
journal, January 2010

  • Talapin, Dmitri V.; Lee, Jong-Soo; Kovalenko, Maksym V.
  • Chemical Reviews, Vol. 110, Issue 1
  • DOI: 10.1021/cr900137k

Closed-loop phase behaviour in block copolymers
journal, September 2002

  • Yeol Ryu, Du; Jeong, Unyong; Kon Kim, Jin
  • Nature Materials, Vol. 1, Issue 2
  • DOI: 10.1038/nmat724

Unusual packing of soft-shelled nanocubes
journal, May 2019


Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots
journal, June 2003

  • Redl, F. X.; Cho, K.-S.; Murray, C. B.
  • Nature, Vol. 423, Issue 6943, p. 968-971
  • DOI: 10.1038/nature01702

Electrostatic control of block copolymer morphology
journal, June 2014

  • Sing, Charles E.; Zwanikken, Jos W.; Olvera de la Cruz, Monica
  • Nature Materials, Vol. 13, Issue 7
  • DOI: 10.1038/nmat4001

Three-Dimensional Patterning of Nanoparticles by Molecular Stamping
journal, May 2020


Superionic Colloidal Crystals: Ionic to Metallic Bonding Transitions
journal, August 2022

  • Lin, Yange; Olvera de la Cruz, Monica
  • The Journal of Physical Chemistry B, Vol. 126, Issue 35
  • DOI: 10.1021/acs.jpcb.2c04041

Next-Generation Digital Information Storage in DNA
journal, August 2012


Insights into DNA-mediated interparticle interactions from a coarse-grained model
journal, November 2014

  • Ding, Yajun; Mittal, Jeetain
  • The Journal of Chemical Physics, Vol. 141, Issue 18
  • DOI: 10.1063/1.4900891

Electrostatic assembly of binary nanoparticle superlattices using protein cages
journal, December 2012

  • Kostiainen, Mauri A.; Hiekkataipale, Panu; Laiho, Ari
  • Nature Nanotechnology, Vol. 8, Issue 1
  • DOI: 10.1038/nnano.2012.220

DNA Linker-Mediated Crystallization of Nanocolloids
journal, February 2008

  • Xiong, Huiming; van der Lelie, Daniel; Gang, Oleg
  • Journal of the American Chemical Society, Vol. 130, Issue 8
  • DOI: 10.1021/ja710710j