DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on Wed May 01 00:00:00 EDT 2024

Title: Ultrahigh-Capacity Rocksalt Cathodes Enabled by Cycling-Activated Structural Changes

Abstract

Abstract Mn‐redox‐based oxides and oxyfluorides are considered the most promising earth‐abundant high‐energy cathode materials for next‐generation lithium‐ion batteries. While high capacities are obtained in high‐Mn content cathodes such as Li‐ and Mn‐rich layered and spinel‐type materials, local structure changes and structural distortions ( often lead to voltage fade, capacity decay, and impedance rise, resulting in unacceptable electrochemical performance upon cycling. In the present study, structural transformations that exploit the high capacity of Mn‐rich oxyfluorides while enabling stable cycling, in stark contrast to commonly observed structural changes that result in rapid performance degradation, are reported. It is shown that upon cycling of a cation‐disordered rocksalt (DRX) cathode (Li 1.1 Mn 0.8 Ti 0.1 O 1.9 F 0.1 , an ultrahigh capacity of ≈320 mAh g −1 (energy density of ≈900 Wh kg −1 ) can be obtained through dynamic structural rearrangements upon cycling , along with a unique voltage profile evolution and capacity rise. At high voltage, the presence of Mn 4+ and Li + vacancies promotes local cation ordering, leading to the formation of domains of a “ δ phase” within the disordered framework. On deep discharge, Mn 4+ reduction, along with Li + insertion transform the structure to a partially orderedmore » DRX phase with a β ′‐LiFeO 2 ‐type arrangement. At the nanoscale, domains of the in situ formed phases are randomly oriented, allowing highly reversible structural changes and stable electrochemical cycling. These new insights not only help explain the superior electrochemical performance of high‐Mn DRXbut also provide guidance for the future development of Mn‐based, high‐energy density oxide, and oxyfluoride cathode materials.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [1]
  1. Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
  2. Univ. of California, Santa Barbara, CA (United States)
  3. Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL); Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Environmental Molecular Sciences Laboratory (EMSL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO); USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF); National Science Foundation (NSF); USDOE
OSTI Identifier:
2234110
Alternate Identifier(s):
OSTI ID: 1983536
Grant/Contract Number:  
AC02-05CH11231; AC02-76SF00515; AC05-76RLO1830; DGE-650114; DE‐AC05‐76RLO1830; DE‐AC02‐05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 13; Journal Issue: 23; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; capacity rise with cycling; disordered rocksalts; lithium-ion batteries; Mn-rich cathode materials; structural transformation

Citation Formats

Ahn, Juhyeon, Giovine, Raynald, Wu, Vincent C., Koirala, Krishna Prasad, Wang, Chongmin, Clément, Raphaële J., and Chen, Guoying. Ultrahigh-Capacity Rocksalt Cathodes Enabled by Cycling-Activated Structural Changes. United States: N. p., 2023. Web. doi:10.1002/aenm.202300221.
Ahn, Juhyeon, Giovine, Raynald, Wu, Vincent C., Koirala, Krishna Prasad, Wang, Chongmin, Clément, Raphaële J., & Chen, Guoying. Ultrahigh-Capacity Rocksalt Cathodes Enabled by Cycling-Activated Structural Changes. United States. https://doi.org/10.1002/aenm.202300221
Ahn, Juhyeon, Giovine, Raynald, Wu, Vincent C., Koirala, Krishna Prasad, Wang, Chongmin, Clément, Raphaële J., and Chen, Guoying. Mon . "Ultrahigh-Capacity Rocksalt Cathodes Enabled by Cycling-Activated Structural Changes". United States. https://doi.org/10.1002/aenm.202300221.
@article{osti_2234110,
title = {Ultrahigh-Capacity Rocksalt Cathodes Enabled by Cycling-Activated Structural Changes},
author = {Ahn, Juhyeon and Giovine, Raynald and Wu, Vincent C. and Koirala, Krishna Prasad and Wang, Chongmin and Clément, Raphaële J. and Chen, Guoying},
abstractNote = {Abstract Mn‐redox‐based oxides and oxyfluorides are considered the most promising earth‐abundant high‐energy cathode materials for next‐generation lithium‐ion batteries. While high capacities are obtained in high‐Mn content cathodes such as Li‐ and Mn‐rich layered and spinel‐type materials, local structure changes and structural distortions ( often lead to voltage fade, capacity decay, and impedance rise, resulting in unacceptable electrochemical performance upon cycling. In the present study, structural transformations that exploit the high capacity of Mn‐rich oxyfluorides while enabling stable cycling, in stark contrast to commonly observed structural changes that result in rapid performance degradation, are reported. It is shown that upon cycling of a cation‐disordered rocksalt (DRX) cathode (Li 1.1 Mn 0.8 Ti 0.1 O 1.9 F 0.1 , an ultrahigh capacity of ≈320 mAh g −1 (energy density of ≈900 Wh kg −1 ) can be obtained through dynamic structural rearrangements upon cycling , along with a unique voltage profile evolution and capacity rise. At high voltage, the presence of Mn 4+ and Li + vacancies promotes local cation ordering, leading to the formation of domains of a “ δ phase” within the disordered framework. On deep discharge, Mn 4+ reduction, along with Li + insertion transform the structure to a partially ordered DRX phase with a β ′‐LiFeO 2 ‐type arrangement. At the nanoscale, domains of the in situ formed phases are randomly oriented, allowing highly reversible structural changes and stable electrochemical cycling. These new insights not only help explain the superior electrochemical performance of high‐Mn DRXbut also provide guidance for the future development of Mn‐based, high‐energy density oxide, and oxyfluoride cathode materials.},
doi = {10.1002/aenm.202300221},
journal = {Advanced Energy Materials},
number = 23,
volume = 13,
place = {United States},
year = {Mon May 01 00:00:00 EDT 2023},
month = {Mon May 01 00:00:00 EDT 2023}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on May 1, 2024
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Galvanostatic Intermittent Titration Technique for Phase-Transformation Electrodes
journal, January 2010

  • Zhu, Yujie; Wang, Chunsheng
  • The Journal of Physical Chemistry C, Vol. 114, Issue 6
  • DOI: 10.1021/jp9113333

Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides
journal, November 2019


Mapping Structural Changes in Electrode Materials: Application of the Hybrid Eigenvector-Following Density Functional Theory (DFT) Method to Layered Li 0.5 MnO 2
journal, August 2015


Unified picture of anionic redox in Li/Na-ion batteries
journal, March 2019


Isotropic High Field NMR Spectra of Li-Ion Battery Materials with Anisotropy >1 MHz
journal, January 2012

  • Hung, Ivan; Zhou, Lina; Pourpoint, Frédérique
  • Journal of the American Chemical Society, Vol. 134, Issue 4
  • DOI: 10.1021/ja209600m

The Pauling File
journal, January 2004


Modelling one- and two-dimensional solid-state NMR spectra: Modelling 1D and 2D solid-state NMR spectra
journal, December 2001

  • Massiot, Dominique; Fayon, Franck; Capron, Mickael
  • Magnetic Resonance in Chemistry, Vol. 40, Issue 1
  • DOI: 10.1002/mrc.984

Accurate and Affordable Explicit Solvent Quantum Mechanics for Electrocatalysis Investigations
journal, January 2021


A review of cation-ordered rock salt superstructure oxides
journal, January 2000

  • Mather, Glenn C.; Dussarrat, Christian; Etourneau, Jean
  • Journal of Materials Chemistry, Vol. 10, Issue 10
  • DOI: 10.1039/b000817f

Influence of Cation Ordering and Lattice Distortion on the Charge–Discharge Behavior of LiMn 1.5 Ni 0.5 O 4 Spinel between 5.0 and 2.0 V
journal, September 2012

  • Lee, Eun-Sung; Nam, Kyung-Wan; Hu, Enyuan
  • Chemistry of Materials, Vol. 24, Issue 18
  • DOI: 10.1021/cm3020836

Synergistic Effects of Ni2+ and Mn3+ on the Electrochemical Activation of Li2MnO3 in Co-Free and Ni-Poor Li-Rich Layered Cathodes
journal, July 2022


Capacity fading of high specific capacity spinel LixMn2-yTiyO4 as cathode material for Li-ion batteries
journal, May 2021

  • Mosquera, Nerly; Bedoya-Lora, Franky; Vásquez, Victoria
  • Journal of Applied Electrochemistry, Vol. 51, Issue 10
  • DOI: 10.1007/s10800-021-01582-w

High-pressure synthesis and electrochemical properties of tetragonal LiMnO2
journal, January 2018

  • Uyama, Takeshi; Mukai, Kazuhiko; Yamada, Ikuya
  • RSC Advances, Vol. 8, Issue 46
  • DOI: 10.1039/C8RA03722A

Chemical and magnetic ordering derived fromab initiosimulations: the case of β′-LiFeO2
journal, March 2010


Electrochemical Cycling-Induced Spinel Formation in High-Charge-Capacity Orthorhombic LiMnO[sub 2]
journal, January 1999

  • Jang, Young-Il
  • Journal of The Electrochemical Society, Vol. 146, Issue 9
  • DOI: 10.1149/1.1392457

Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries
journal, January 2014


Solid state chemistry for developing better metal-ion batteries
journal, October 2020

  • Abakumov, Artem M.; Fedotov, Stanislav S.; Antipov, Evgeny V.
  • Nature Communications, Vol. 11, Issue 1
  • DOI: 10.1038/s41467-020-18736-7

Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li–O 2 Batteries
journal, March 2012

  • McCloskey, B. D.; Speidel, A.; Scheffler, R.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 8
  • DOI: 10.1021/jz300243r

A region-specific raw material and lithium-ion battery criticality methodology with an assessment of NMC cathode technology
journal, November 2021


Neutron diffraction study of the β′ and γ phases of LiFeO2
journal, September 2009


Investigating Particle Size‐Dependent Redox Kinetics and Charge Distribution in Disordered Rocksalt Cathodes
journal, February 2022

  • Zhang, Yuxin; Hu, Anyang; Liu, Jue
  • Advanced Functional Materials, Vol. 32, Issue 17
  • DOI: 10.1002/adfm.202110502

Fluorination‐Enhanced Surface Stability of Cation‐Disordered Rocksalt Cathodes for Li‐Ion Batteries
journal, April 2021

  • Li, Linze; Lun, Zhengyan; Chen, Dongchang
  • Advanced Functional Materials, Vol. 31, Issue 25
  • DOI: 10.1002/adfm.202101888

Structural and Chemical Evolution of Li- and Mn-Rich Layered Cathode Material
journal, February 2015

  • Zheng, Jianming; Xu, Pinghong; Gu, Meng
  • Chemistry of Materials, Vol. 27, Issue 4
  • DOI: 10.1021/cm5045978

Tailoring the redox-active transition metal content to enhance cycling stability in cation-disordered rock-salt oxides
journal, December 2021


Non-topotactic reactions enable high rate capability in Li-rich cathode materials
journal, May 2021


Electrochemical modeling of intercalation processes with phase field models
journal, October 2004


Metastable and nanosize cation-disordered rocksalt-type oxides: revisit of stoichiometric LiMnO 2 and NaMnO 2
journal, January 2018

  • Sato, Takahito; Sato, Kei; Zhao, Wenwen
  • Journal of Materials Chemistry A, Vol. 6, Issue 28
  • DOI: 10.1039/C8TA03667E

Al-Doped Co-Free Layered-Spinel Mn/Ni Oxides as High-Capacity Cathode Materials for Advanced Li-Ion Batteries
journal, April 2022

  • Nayak, Prasant Kumar; Boopathi, Dhatshanamoorthy; Levi, Elena
  • ACS Applied Energy Materials, Vol. 5, Issue 4
  • DOI: 10.1021/acsaem.1c03859

A review of conduction phenomena in Li-ion batteries
journal, December 2010


Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries
journal, February 2019


Charge Transfer Band Gap as an Indicator of Hysteresis in Li-Disordered Rock Salt Cathodes for Li-Ion Batteries
journal, June 2019

  • Jacquet, Quentin; Iadecola, Antonella; Saubanère, Matthieu
  • Journal of the American Chemical Society, Vol. 141, Issue 29
  • DOI: 10.1021/jacs.8b11413

Preparation of AFeO2 (A = Li, Na) by hydrothermal method
journal, July 1995


LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries
journal, December 2020


Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery
journal, October 2019


Combining Accurate O 2 and Li 2 O 2 Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li–O 2 Batteries
journal, August 2013

  • McCloskey, Bryan D.; Valery, Alexia; Luntz, Alan C.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 17
  • DOI: 10.1021/jz401659f

Hydrolysis of LiPF 6 -Containing Electrolyte at High Voltage
journal, May 2021


Metastable Li 1+δ Mn 2 O 4 (0 ≤ δ ≤ 1) Spinel Phases Revealed by in Operando Neutron Diffraction and First-Principles Calculations
journal, November 2018


Manganese oxides for lithium batteries
journal, January 1997


A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries
journal, January 2014

  • Manthiram, Arumugam; Chemelewski, Katharine; Lee, Eun-Sung
  • Energy & Environmental Science, Vol. 7, Issue 4
  • DOI: 10.1039/c3ee42981d

Lithium extraction from orthorhombic lithium manganese oxide and the phase transformation to spinel
journal, December 1993


Thermodynamics of Phase Selection in MnO 2 Framework Structures through Alkali Intercalation and Hydration
journal, February 2017

  • Kitchaev, Daniil A.; Dacek, Stephen T.; Sun, Wenhao
  • Journal of the American Chemical Society, Vol. 139, Issue 7
  • DOI: 10.1021/jacs.6b11301

Origin of structural degradation in Li-rich layered oxide cathode
journal, June 2022


Layered Li-Mn-Oxide with the O2 Structure: A Cathode Material for Li-Ion Cells Which Does Not Convert to Spinel
journal, January 1999

  • Paulsen, J. M.
  • Journal of The Electrochemical Society, Vol. 146, Issue 10
  • DOI: 10.1149/1.1392514

Determining the Criticality of Li‐Excess for Disordered‐Rocksalt Li‐Ion Battery Cathodes
journal, May 2021

  • Lee, Jinhyuk; Wang, Chao; Malik, Rahul
  • Advanced Energy Materials, Vol. 11, Issue 24
  • DOI: 10.1002/aenm.202100204

Formation and impact of nanoscopic oriented phase domains in electrochemical crystalline electrodes
journal, October 2022


Anion Reactivity in Cation‐Disordered Rocksalt Cathode Materials: The Influence of Fluorine Substitution
journal, August 2020

  • Crafton, Matthew J.; Yue, Yuan; Huang, Tzu‐Yang
  • Advanced Energy Materials, Vol. 10, Issue 35
  • DOI: 10.1002/aenm.202001500

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Combined Neutron Diffraction, NMR, and Electrochemical Investigation of the Layered-to-Spinel Transformation in LiMnO 2
journal, August 2004

  • Armstrong, A. Robert; Dupre, Nicolas; Paterson, Allan J.
  • Chemistry of Materials, Vol. 16, Issue 16
  • DOI: 10.1021/cm034964b

A powder neutron diffraction study of λ and γ manganese dioxide and of LiMn2O4
journal, January 1994

  • Fong, C.; Kennedy, B. J.; Elcombe, M. M.
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 209, Issue 12
  • DOI: 10.1524/zkri.1994.209.12.941

Effect of cooling rate on the structure and electrochemical properties of Mn-based oxyfluorides with cation-disordered rock-salt structure
journal, August 2022


Transition metal migration and O2 formation underpin voltage hysteresis in oxygen-redox disordered rocksalt cathodes
journal, September 2022


Order-disorder transitions in heat-treated rock-salt Lithium Ferrite
journal, September 1964


Understanding the Effect of Cation Disorder on the Voltage Profile of Lithium Transition-Metal Oxides
journal, July 2016


Effect of overdischarge (overlithiation) on electrochemical properties of LiMn2O4 samples of different origin
journal, June 2017

  • Kosilov, V. V.; Potapenko, A. V.; Kirillov, S. A.
  • Journal of Solid State Electrochemistry, Vol. 21, Issue 11
  • DOI: 10.1007/s10008-017-3671-7

A new active Li–Mn–O compound for high energy density Li-ion batteries
journal, November 2015

  • Freire, M.; Kosova, N. V.; Jordy, C.
  • Nature Materials, Vol. 15, Issue 2
  • DOI: 10.1038/nmat4479

LT-LiMn 0.5 Ni 0.5 O 2 : a unique co-free cathode for high energy Li-ion cells
journal, January 2021

  • Shi, Boyu; Gim, Jihyeon; Li, Linze
  • Chemical Communications, Vol. 57, Issue 84
  • DOI: 10.1039/D1CC04334J

Effect of Cation Arrangement on the Magnetic Properties of Lithium Ferrites (LiFeO2) Prepared by Hydrothermal Reaction and Post-annealing Method
journal, November 1998

  • Tabuchi, Mitsuharu; Tsutsui, Satoshi; Masquelier, Christian
  • Journal of Solid State Chemistry, Vol. 140, Issue 2
  • DOI: 10.1006/jssc.1998.7725

Ultrahigh power and energy density in partially ordered lithium-ion cathode materials
journal, March 2020


Low-temperature synthesized Li 4 Mn 5 O 12 -like cathode with hybrid cation- and anion-redox capacities
journal, January 2019

  • Liu, Yang; Liu, Guang; Xu, Hui
  • Chemical Communications, Vol. 55, Issue 56
  • DOI: 10.1039/C9CC02006C

Synthesis and structural characterization of defect spinels in the lithium-manganese-oxide system
journal, October 1993


Exceptional Cycling Performance Enabled by Local Structural Rearrangements in Disordered Rocksalt Cathodes
journal, May 2022

  • Ahn, Juhyeon; Ha, Yang; Satish, Rohit
  • Advanced Energy Materials, Vol. 12, Issue 27
  • DOI: 10.1002/aenm.202200426

An Improved 2D Magic-Angle-Turning Pulse Sequence for the Measurement of Chemical-Shift Anisotropy
journal, November 1996

  • Gan, Zhehong; Ernst, R. R.
  • Journal of Magnetic Resonance, Series A, Vol. 123, Issue 1
  • DOI: 10.1006/jmra.1996.0227

Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals
journal, October 2017


Nanostructured Li 2 MnO 3 : a disordered rock salt type structure for high energy density Li ion batteries
journal, January 2017

  • Freire, M.; Lebedev, O. I.; Maignan, A.
  • J. Mater. Chem. A, Vol. 5, Issue 41
  • DOI: 10.1039/C7TA07476J

Nanocrystalline Li[sub x]Mn[sub 2−y]O[sub 4] Cathodes for Solid-State Thin-Film Rechargeable Lithium Batteries
journal, January 1999

  • Dudney, N. J.
  • Journal of The Electrochemical Society, Vol. 146, Issue 7
  • DOI: 10.1149/1.1391955

Extensive Migration of Ni and Mn by Lithiation of Ordered LiMg 0.1 Ni 0.4 Mn 1.5 O 4 Spinel
journal, October 2004

  • Wagemaker, Marnix; Ooms, Frans G. B.; Kelder, Erik M.
  • Journal of the American Chemical Society, Vol. 126, Issue 41
  • DOI: 10.1021/ja048319x

Double the Capacity of Manganese Spinel for Lithium‐Ion Storage by Suppression of Cooperative Jahn–Teller Distortion
journal, July 2020

  • Zuo, Changjian; Hu, Zongxiang; Qi, Rui
  • Advanced Energy Materials, Vol. 10, Issue 34
  • DOI: 10.1002/aenm.202000363

Thermodynamic and Mass Transport Properties of “LiAl”
journal, January 1979

  • Wen, C. John
  • Journal of The Electrochemical Society, Vol. 126, Issue 12
  • DOI: 10.1149/1.2128939

Solvents’ Critical Role in Nonaqueous Lithium–Oxygen Battery Electrochemistry
journal, May 2011

  • McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 10, p. 1161-1166
  • DOI: 10.1021/jz200352v

Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes
journal, January 2020

  • Clément, R. J.; Lun, Z.; Ceder, G.
  • Energy & Environmental Science, Vol. 13, Issue 2
  • DOI: 10.1039/C9EE02803J